Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,14 +9,14 @@ from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5Tokenize
|
|
| 9 |
dtype = torch.bfloat16
|
| 10 |
device = "cuda"
|
| 11 |
|
| 12 |
-
|
| 13 |
-
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained
|
| 14 |
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
|
| 15 |
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
|
| 16 |
-
text_encoder_2 = T5EncoderModel.from_pretrained(
|
| 17 |
-
tokenizer_2 = T5TokenizerFast.from_pretrained(
|
| 18 |
-
vae = AutoencoderKL.from_pretrained(
|
| 19 |
-
transformer = FluxTransformer2DModel.from_pretrained("diffusers-internal-dev/FLUX.1-
|
| 20 |
|
| 21 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
|
|
@@ -34,7 +34,7 @@ MAX_SEED = np.iinfo(np.int32).max
|
|
| 34 |
MAX_IMAGE_SIZE = 2048
|
| 35 |
|
| 36 |
@spaces.GPU()
|
| 37 |
-
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=
|
| 38 |
if randomize_seed:
|
| 39 |
seed = random.randint(0, MAX_SEED)
|
| 40 |
generator = torch.Generator().manual_seed(seed)
|
|
@@ -44,7 +44,7 @@ def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_in
|
|
| 44 |
height = height,
|
| 45 |
num_inference_steps = num_inference_steps,
|
| 46 |
generator = generator,
|
| 47 |
-
guidance_scale=
|
| 48 |
).images[0]
|
| 49 |
return image, seed
|
| 50 |
|
|
@@ -114,14 +114,21 @@ with gr.Blocks(css=css) as demo:
|
|
| 114 |
)
|
| 115 |
|
| 116 |
with gr.Row():
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
num_inference_steps = gr.Slider(
|
| 120 |
label="Number of inference steps",
|
| 121 |
minimum=1,
|
| 122 |
maximum=50,
|
| 123 |
step=1,
|
| 124 |
-
value=
|
| 125 |
)
|
| 126 |
|
| 127 |
gr.Examples(
|
|
@@ -135,7 +142,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 135 |
gr.on(
|
| 136 |
triggers=[run_button.click, prompt.submit],
|
| 137 |
fn = infer,
|
| 138 |
-
inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
|
| 139 |
outputs = [result, seed]
|
| 140 |
)
|
| 141 |
|
|
|
|
| 9 |
dtype = torch.bfloat16
|
| 10 |
device = "cuda"
|
| 11 |
|
| 12 |
+
bfl_repo = "black-forest-labs/FLUX.1-schnell"
|
| 13 |
+
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(bfl_repo, subfolder="scheduler", revision="refs/pr/1")
|
| 14 |
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
|
| 15 |
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
|
| 16 |
+
text_encoder_2 = T5EncoderModel.from_pretrained(bfl_repo, subfolder="text_encoder_2", torch_dtype=dtype, revision="refs/pr/1")
|
| 17 |
+
tokenizer_2 = T5TokenizerFast.from_pretrained(bfl_repo, subfolder="tokenizer_2", torch_dtype=dtype, revision="refs/pr/1")
|
| 18 |
+
vae = AutoencoderKL.from_pretrained(bfl_repo, subfolder="vae", torch_dtype=dtype, revision="refs/pr/1")
|
| 19 |
+
transformer = FluxTransformer2DModel.from_pretrained("diffusers-internal-dev/FLUX.1-dev", subfolder="transformer", torch_dtype=dtype, revision="refs/pr/1")
|
| 20 |
|
| 21 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
|
|
|
|
| 34 |
MAX_IMAGE_SIZE = 2048
|
| 35 |
|
| 36 |
@spaces.GPU()
|
| 37 |
+
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
| 38 |
if randomize_seed:
|
| 39 |
seed = random.randint(0, MAX_SEED)
|
| 40 |
generator = torch.Generator().manual_seed(seed)
|
|
|
|
| 44 |
height = height,
|
| 45 |
num_inference_steps = num_inference_steps,
|
| 46 |
generator = generator,
|
| 47 |
+
guidance_scale=guidance_scale
|
| 48 |
).images[0]
|
| 49 |
return image, seed
|
| 50 |
|
|
|
|
| 114 |
)
|
| 115 |
|
| 116 |
with gr.Row():
|
| 117 |
+
|
| 118 |
+
guidance_scale = gr.Slider(
|
| 119 |
+
label="Guidance Scale",
|
| 120 |
+
minimum=1,
|
| 121 |
+
maximum=15,
|
| 122 |
+
step=1,
|
| 123 |
+
value=5.0,
|
| 124 |
+
)
|
| 125 |
|
| 126 |
num_inference_steps = gr.Slider(
|
| 127 |
label="Number of inference steps",
|
| 128 |
minimum=1,
|
| 129 |
maximum=50,
|
| 130 |
step=1,
|
| 131 |
+
value=28,
|
| 132 |
)
|
| 133 |
|
| 134 |
gr.Examples(
|
|
|
|
| 142 |
gr.on(
|
| 143 |
triggers=[run_button.click, prompt.submit],
|
| 144 |
fn = infer,
|
| 145 |
+
inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
| 146 |
outputs = [result, seed]
|
| 147 |
)
|
| 148 |
|