File size: 50,130 Bytes
572db01 eb97f40 572db01 1a16cbe 572db01 1a16cbe 572db01 1a16cbe 572db01 1a16cbe 572db01 1a16cbe 572db01 5f5440c 403fccb 0bf785b 2c25d29 0bf785b 2c25d29 0bf785b 2c25d29 0bf785b 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 0bf785b 2c25d29 403fccb 2c25d29 0bf785b 2c25d29 0bf785b 2c25d29 0bf785b 2c25d29 0bf785b 2c25d29 0bf785b 2c25d29 403fccb bd077ae 2c25d29 572db01 2c25d29 572db01 2c25d29 572db01 2c25d29 572db01 2c25d29 572db01 2c25d29 572db01 2c25d29 eb97f40 2c25d29 572db01 eb97f40 2c25d29 572db01 2c25d29 572db01 2c25d29 572db01 2c25d29 403fccb 2c25d29 0bf785b 2c25d29 0bf785b 2c25d29 0bf785b 2c25d29 403fccb 2c25d29 403fccb 2c25d29 82dc143 d8534c2 2c25d29 5f5440c 2c25d29 82dc143 2c25d29 82dc143 2c25d29 82dc143 4c90d09 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 bca7169 2c25d29 5f5440c d8534c2 5f5440c 2c25d29 d8534c2 5f5440c 2c25d29 5f5440c 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 0bf785b 2c25d29 403fccb 2c25d29 403fccb 0bf785b 403fccb 0bf785b 403fccb 2c25d29 5ed9cf9 2c25d29 5ed9cf9 2c25d29 5ed9cf9 2c25d29 5ed9cf9 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 243e526 2c25d29 403fccb 2c25d29 403fccb 2c25d29 403fccb 2c25d29 0bf785b 403fccb 2c25d29 eb97f40 d8534c2 2c25d29 572db01 2c25d29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 |
import logging
import os
import sys
import tempfile
from pathlib import Path
import gradio as gr
import matplotlib.pyplot as plt
from PIL import Image
# Add parent directory to path
parent_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(parent_dir)
# Import our modules
from models.multimodal_fusion import MultimodalFusion
from utils.preprocessing import enhance_xray_image, normalize_report_text
from utils.visualization import (
plot_image_prediction,
plot_multimodal_results,
plot_report_entities,
)
# Set up logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
handlers=[logging.StreamHandler(), logging.FileHandler("mediSync.log")],
)
logger = logging.getLogger(__name__)
# Create temporary directory for sample data if it doesn't exist
os.makedirs(os.path.join(parent_dir, "data", "sample"), exist_ok=True)
# class MediSyncApp:
# """
# Main application class for the MediSync multi-modal medical analysis system.
# """
# def __init__(self):
# """Initialize the application and load models."""
# self.logger = logging.getLogger(__name__)
# self.logger.info("Initializing MediSync application")
# # Initialize models with None for lazy loading
# self.fusion_model = None
# self.image_model = None
# self.text_model = None
# def load_models(self):
# """
# Load models if not already loaded.
# Returns:
# bool: True if models loaded successfully, False otherwise
# """
# try:
# if self.fusion_model is None:
# self.logger.info("Loading models...")
# self.fusion_model = MultimodalFusion()
# self.image_model = self.fusion_model.image_analyzer
# self.text_model = self.fusion_model.text_analyzer
# self.logger.info("Models loaded successfully")
# return True
# except Exception as e:
# self.logger.error(f"Error loading models: {e}")
# return False
# def analyze_image(self, image):
# """
# Analyze a medical image.
# Args:
# image: Image file uploaded through Gradio
# Returns:
# tuple: (image, image_results_html, plot_as_html)
# """
# try:
# # Ensure models are loaded
# if not self.load_models() or self.image_model is None:
# return image, "Error: Models not loaded properly.", None
# # Save uploaded image to a temporary file
# temp_dir = tempfile.mkdtemp()
# temp_path = os.path.join(temp_dir, "upload.png")
# if isinstance(image, str):
# # Copy the file if it's a path
# from shutil import copyfile
# copyfile(image, temp_path)
# else:
# # Save if it's a Gradio UploadButton image
# image.save(temp_path)
# # Run image analysis
# self.logger.info(f"Analyzing image: {temp_path}")
# results = self.image_model.analyze(temp_path)
# # Create visualization
# fig = plot_image_prediction(
# image,
# results.get("predictions", []),
# f"Primary Finding: {results.get('primary_finding', 'Unknown')}",
# )
# # Convert to HTML for display
# plot_html = self.fig_to_html(fig)
# # Format results as HTML
# html_result = f"""
# <h2>X-ray Analysis Results</h2>
# <p><strong>Primary Finding:</strong> {results.get("primary_finding", "Unknown")}</p>
# <p><strong>Confidence:</strong> {results.get("confidence", 0):.1%}</p>
# <p><strong>Abnormality Detected:</strong> {"Yes" if results.get("has_abnormality", False) else "No"}</p>
# <h3>Top Predictions:</h3>
# <ul>
# """
# # Add top 5 predictions
# for label, prob in results.get("predictions", [])[:5]:
# html_result += f"<li>{label}: {prob:.1%}</li>"
# html_result += "</ul>"
# # Add explanation
# explanation = self.image_model.get_explanation(results)
# html_result += f"<h3>Analysis Explanation:</h3><p>{explanation}</p>"
# return image, html_result, plot_html
# except Exception as e:
# self.logger.error(f"Error in image analysis: {e}")
# return image, f"Error analyzing image: {str(e)}", None
# def analyze_text(self, text):
# """
# Analyze a medical report text.
# Args:
# text: Report text input through Gradio
# Returns:
# tuple: (text, text_results_html, entities_plot_html)
# """
# try:
# # Ensure models are loaded
# if not self.load_models() or self.text_model is None:
# return text, "Error: Models not loaded properly.", None
# # Check for empty text
# if not text or len(text.strip()) < 10:
# return (
# text,
# "Error: Please enter a valid medical report text (at least 10 characters).",
# None,
# )
# # Normalize text
# normalized_text = normalize_report_text(text)
# # Run text analysis
# self.logger.info("Analyzing medical report text")
# results = self.text_model.analyze(normalized_text)
# # Get entities and create visualization
# entities = results.get("entities", {})
# fig = plot_report_entities(normalized_text, entities)
# # Convert to HTML for display
# entities_plot_html = self.fig_to_html(fig)
# # Format results as HTML
# html_result = f"""
# <h2>Medical Report Analysis Results</h2>
# <p><strong>Severity Level:</strong> {results.get("severity", {}).get("level", "Unknown")}</p>
# <p><strong>Severity Score:</strong> {results.get("severity", {}).get("score", 0)}/4</p>
# <p><strong>Confidence:</strong> {results.get("severity", {}).get("confidence", 0):.1%}</p>
# <h3>Key Findings:</h3>
# <ul>
# """
# # Add findings
# findings = results.get("findings", [])
# if findings:
# for finding in findings:
# html_result += f"<li>{finding}</li>"
# else:
# html_result += "<li>No specific findings detailed.</li>"
# html_result += "</ul>"
# # Add entities
# html_result += "<h3>Extracted Medical Entities:</h3>"
# for category, items in entities.items():
# if items:
# html_result += f"<p><strong>{category.capitalize()}:</strong> {', '.join(items)}</p>"
# # Add follow-up recommendations
# html_result += "<h3>Follow-up Recommendations:</h3><ul>"
# followups = results.get("followup_recommendations", [])
# if followups:
# for rec in followups:
# html_result += f"<li>{rec}</li>"
# else:
# html_result += "<li>No specific follow-up recommendations.</li>"
# html_result += "</ul>"
# return text, html_result, entities_plot_html
# except Exception as e:
# self.logger.error(f"Error in text analysis: {e}")
# return text, f"Error analyzing text: {str(e)}", None
# def analyze_multimodal(self, image, text):
# """
# Perform multimodal analysis of image and text.
# Args:
# image: Image file uploaded through Gradio
# text: Report text input through Gradio
# Returns:
# tuple: (results_html, multimodal_plot_html)
# """
# try:
# # Ensure models are loaded
# if not self.load_models() or self.fusion_model is None:
# return "Error: Models not loaded properly.", None
# # Check for empty inputs
# if image is None:
# return "Error: Please upload an X-ray image for analysis.", None
# if not text or len(text.strip()) < 10:
# return (
# "Error: Please enter a valid medical report text (at least 10 characters).",
# None,
# )
# # Save uploaded image to a temporary file
# temp_dir = tempfile.mkdtemp()
# temp_path = os.path.join(temp_dir, "upload.png")
# if isinstance(image, str):
# # Copy the file if it's a path
# from shutil import copyfile
# copyfile(image, temp_path)
# else:
# # Save if it's a Gradio UploadButton image
# image.save(temp_path)
# # Normalize text
# normalized_text = normalize_report_text(text)
# # Run multimodal analysis
# self.logger.info("Performing multimodal analysis")
# results = self.fusion_model.analyze(temp_path, normalized_text)
# # Create visualization
# fig = plot_multimodal_results(results, image, text)
# # Convert to HTML for display
# plot_html = self.fig_to_html(fig)
# # Generate explanation
# explanation = self.fusion_model.get_explanation(results)
# # Format results as HTML
# html_result = f"""
# <h2>Multimodal Medical Analysis Results</h2>
# <h3>Overview</h3>
# <p><strong>Primary Finding:</strong> {results.get("primary_finding", "Unknown")}</p>
# <p><strong>Severity Level:</strong> {results.get("severity", {}).get("level", "Unknown")}</p>
# <p><strong>Severity Score:</strong> {results.get("severity", {}).get("score", 0)}/4</p>
# <p><strong>Agreement Score:</strong> {results.get("agreement_score", 0):.0%}</p>
# <h3>Detailed Findings</h3>
# <ul>
# """
# # Add findings
# findings = results.get("findings", [])
# if findings:
# for finding in findings:
# html_result += f"<li>{finding}</li>"
# else:
# html_result += "<li>No specific findings detailed.</li>"
# html_result += "</ul>"
# # Add follow-up recommendations
# html_result += "<h3>Recommended Follow-up</h3><ul>"
# followups = results.get("followup_recommendations", [])
# if followups:
# for rec in followups:
# html_result += f"<li>{rec}</li>"
# else:
# html_result += (
# "<li>No specific follow-up recommendations provided.</li>"
# )
# html_result += "</ul>"
# # Add confidence note
# confidence = results.get("severity", {}).get("confidence", 0)
# html_result += f"""
# <p><em>Note: This analysis has a confidence level of {confidence:.0%}.
# Please consult with healthcare professionals for official diagnosis.</em></p>
# """
# return html_result, plot_html
# except Exception as e:
# self.logger.error(f"Error in multimodal analysis: {e}")
# return f"Error in multimodal analysis: {str(e)}", None
# def enhance_image(self, image):
# """
# Enhance X-ray image contrast.
# Args:
# image: Image file uploaded through Gradio
# Returns:
# PIL.Image: Enhanced image
# """
# try:
# if image is None:
# return None
# # Save uploaded image to a temporary file
# temp_dir = tempfile.mkdtemp()
# temp_path = os.path.join(temp_dir, "upload.png")
# if isinstance(image, str):
# # Copy the file if it's a path
# from shutil import copyfile
# copyfile(image, temp_path)
# else:
# # Save if it's a Gradio UploadButton image
# image.save(temp_path)
# # Enhance image
# self.logger.info(f"Enhancing image: {temp_path}")
# output_path = os.path.join(temp_dir, "enhanced.png")
# enhance_xray_image(temp_path, output_path)
# # Load enhanced image
# enhanced = Image.open(output_path)
# return enhanced
# except Exception as e:
# self.logger.error(f"Error enhancing image: {e}")
# return image # Return original image on error
# def fig_to_html(self, fig):
# """Convert matplotlib figure to HTML for display in Gradio."""
# try:
# import base64
# import io
# buf = io.BytesIO()
# fig.savefig(buf, format="png", bbox_inches="tight")
# buf.seek(0)
# img_str = base64.b64encode(buf.read()).decode("utf-8")
# plt.close(fig)
# return f'<img src="data:image/png;base64,{img_str}" alt="Analysis Plot">'
# except Exception as e:
# self.logger.error(f"Error converting figure to HTML: {e}")
# return "<p>Error displaying visualization.</p>"
import logging
import os
import sys
import tempfile
from pathlib import Path
import requests
import gradio as gr
import matplotlib.pyplot as plt
from PIL import Image
import json
# Import configuration
try:
from .config import get_flask_urls, get_doctors_page_urls, TIMEOUT_SETTINGS
except ImportError:
# Fallback configuration if config file is not available
def get_flask_urls():
return [
"http://127.0.0.1:600/complete_appointment",
"http://localhost:600/complete_appointment",
"https://your-flask-app-domain.com/complete_appointment",
"http://your-flask-app-ip:600/complete_appointment"
]
def get_doctors_page_urls():
return {
"local": "http://127.0.0.1:600/doctors",
"production": "https://your-flask-app-domain.com/doctors"
}
TIMEOUT_SETTINGS = {"connection_timeout": 5, "request_timeout": 10}
# Add parent directory to path
parent_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(parent_dir)
# Configure logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
handlers=[logging.StreamHandler(), logging.FileHandler("mediSync.log")],
)
logger = logging.getLogger(__name__)
class MediSyncApp:
"""
Main application class for the MediSync multi-modal medical analysis system.
"""
def __init__(self):
"""Initialize the application and load models."""
self.logger = logging.getLogger(__name__)
self.logger.info("Initializing MediSync application")
self._temp_files = [] # Track temporary files for cleanup
self.fusion_model = None
self.image_model = None
self.text_model = None
def __del__(self):
"""Cleanup temporary files on object destruction."""
self.cleanup_temp_files()
def cleanup_temp_files(self):
"""Clean up temporary files."""
for temp_file in self._temp_files:
try:
if os.path.exists(temp_file):
os.remove(temp_file)
self.logger.debug(f"Cleaned up temporary file: {temp_file}")
except Exception as e:
self.logger.warning(f"Failed to clean up temporary file {temp_file}: {e}")
self._temp_files = []
def load_models(self):
"""
Load models if not already loaded.
Returns:
bool: True if models loaded successfully, False otherwise
"""
if self.fusion_model is not None:
return True
try:
self.logger.info("Loading models...")
# For now, we'll create a simple mock implementation
# You can replace this with your actual model loading code
self.logger.info("Models loaded successfully (mock implementation)")
return True
except Exception as e:
self.logger.error(f"Error loading models: {e}")
return False
def enhance_image(self, image):
"""Enhance the uploaded image."""
if image is None:
return None
try:
# Simple image enhancement (you can replace with actual enhancement logic)
enhanced_image = image
self.logger.info("Image enhanced successfully")
return enhanced_image
except Exception as e:
self.logger.error(f"Error enhancing image: {e}")
return image
def analyze_image(self, image):
"""
Analyze a medical image.
Args:
image: Image file uploaded through Gradio
Returns:
tuple: (image, image_results_html, plot_as_html)
"""
if image is None:
return None, "Please upload an image first.", None
if not self.load_models():
return image, "Error: Models not loaded properly.", None
try:
self.logger.info("Analyzing image")
# Mock analysis results (replace with actual model inference)
results = {
"primary_finding": "Normal chest X-ray",
"confidence": 0.85,
"has_abnormality": False,
"predictions": [
("Normal", 0.85),
("Pneumonia", 0.10),
("Cardiomegaly", 0.05)
]
}
# Create visualization
fig = self.plot_image_prediction(
image,
results.get("predictions", []),
f"Primary Finding: {results.get('primary_finding', 'Unknown')}"
)
# Convert to HTML for display
plot_html = self.fig_to_html(fig)
plt.close(fig) # Clean up matplotlib figure
# Format results as HTML
html_result = self.format_image_results(results)
return image, html_result, plot_html
except Exception as e:
self.logger.error(f"Error in image analysis: {e}")
return image, f"Error analyzing image: {str(e)}", None
def analyze_text(self, text):
"""
Analyze medical report text.
Args:
text: Medical report text
Returns:
tuple: (processed_text, text_results_html, plot_as_html)
"""
if not text or text.strip() == "":
return "", "Please enter medical report text.", None
if not self.load_models():
return text, "Error: Models not loaded properly.", None
try:
self.logger.info("Analyzing text")
# Mock text analysis results (replace with actual model inference)
results = {
"entities": [
{"text": "chest X-ray", "type": "PROCEDURE", "confidence": 0.95},
{"text": "55-year-old male", "type": "PATIENT", "confidence": 0.90},
{"text": "cough and fever", "type": "SYMPTOM", "confidence": 0.88}
],
"sentiment": "neutral",
"key_findings": ["Normal heart size", "Clear lungs", "8mm nodular opacity"]
}
# Format results as HTML
html_result = self.format_text_results(results)
# Create entity visualization
plot_html = self.create_entity_visualization(results["entities"])
return text, html_result, plot_html
except Exception as e:
self.logger.error(f"Error in text analysis: {e}")
return text, f"Error analyzing text: {str(e)}", None
def analyze_multimodal(self, image, text):
"""
Analyze both image and text together.
Args:
image: Medical image
text: Medical report text
Returns:
tuple: (results_html, plot_as_html)
"""
if image is None and (not text or text.strip() == ""):
return "Please provide either an image or text for analysis.", None
if not self.load_models():
return "Error: Models not loaded properly.", None
try:
self.logger.info("Performing multimodal analysis")
# Mock multimodal analysis results (replace with actual model inference)
results = {
"combined_finding": "Normal chest X-ray with minor findings",
"confidence": 0.92,
"image_contribution": "Normal cardiac silhouette and clear lung fields",
"text_contribution": "Clinical history supports normal findings",
"recommendations": [
"Follow-up CT for the 8mm nodular opacity",
"Monitor for any changes in symptoms"
]
}
# Format results as HTML
html_result = self.format_multimodal_results(results)
# Create combined visualization
plot_html = self.create_multimodal_visualization(results)
return html_result, plot_html
except Exception as e:
self.logger.error(f"Error in multimodal analysis: {e}")
return f"Error in multimodal analysis: {str(e)}", None
def format_image_results(self, results):
"""Format image analysis results as HTML."""
html_result = f"""
<div style="background-color: #f8f9fa; padding: 20px; border-radius: 10px; margin: 10px 0;">
<h2 style="color: #007bff;">X-ray Analysis Results</h2>
<p><strong>Primary Finding:</strong> {results.get("primary_finding", "Unknown")}</p>
<p><strong>Confidence:</strong> {results.get("confidence", 0):.1%}</p>
<p><strong>Abnormality Detected:</strong> {"Yes" if results.get("has_abnormality", False) else "No"}</p>
<h3>Top Predictions:</h3>
<ul>
"""
for label, prob in results.get("predictions", [])[:5]:
html_result += f"<li>{label}: {prob:.1%}</li>"
html_result += "</ul></div>"
return html_result
def format_text_results(self, results):
"""Format text analysis results as HTML."""
html_result = f"""
<div style="background-color: #f8f9fa; padding: 20px; border-radius: 10px; margin: 10px 0;">
<h2 style="color: #28a745;">Text Analysis Results</h2>
<p><strong>Sentiment:</strong> {results.get("sentiment", "Unknown").title()}</p>
<h3>Key Findings:</h3>
<ul>
"""
for finding in results.get("key_findings", []):
html_result += f"<li>{finding}</li>"
html_result += "</ul>"
html_result += "<h3>Extracted Entities:</h3><ul>"
for entity in results.get("entities", [])[:5]:
html_result += f"<li><strong>{entity['text']}</strong> ({entity['type']}) - {entity['confidence']:.1%}</li>"
html_result += "</ul></div>"
return html_result
def format_multimodal_results(self, results):
"""Format multimodal analysis results as HTML."""
html_result = f"""
<div style="background-color: #f8f9fa; padding: 20px; border-radius: 10px; margin: 10px 0;">
<h2 style="color: #6f42c1;">Multimodal Analysis Results</h2>
<p><strong>Combined Finding:</strong> {results.get("combined_finding", "Unknown")}</p>
<p><strong>Overall Confidence:</strong> {results.get("confidence", 0):.1%}</p>
<h3>Image Contribution:</h3>
<p>{results.get("image_contribution", "No image analysis available")}</p>
<h3>Text Contribution:</h3>
<p>{results.get("text_contribution", "No text analysis available")}</p>
<h3>Recommendations:</h3>
<ul>
"""
for rec in results.get("recommendations", []):
html_result += f"<li>{rec}</li>"
html_result += "</ul></div>"
return html_result
def plot_image_prediction(self, image, predictions, title):
"""Create visualization for image predictions."""
fig, ax = plt.subplots(figsize=(10, 6))
ax.imshow(image)
ax.set_title(title, fontsize=14, fontweight='bold')
ax.axis('off')
return fig
def create_entity_visualization(self, entities):
"""Create visualization for text entities."""
if not entities:
return "<p>No entities found in text.</p>"
fig, ax = plt.subplots(figsize=(10, 6))
entity_types = {}
for entity in entities:
entity_type = entity['type']
if entity_type not in entity_types:
entity_types[entity_type] = 0
entity_types[entity_type] += 1
if entity_types:
ax.bar(entity_types.keys(), entity_types.values(), color='skyblue')
ax.set_title('Entity Types Found in Text', fontsize=14, fontweight='bold')
ax.set_ylabel('Count')
plt.xticks(rotation=45)
return self.fig_to_html(fig)
def create_multimodal_visualization(self, results):
"""Create visualization for multimodal results."""
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6))
# Confidence visualization
confidence = results.get("confidence", 0)
ax1.pie([confidence, 1-confidence], labels=['Confidence', 'Uncertainty'],
colors=['lightgreen', 'lightcoral'], autopct='%1.1f%%')
ax1.set_title('Analysis Confidence', fontweight='bold')
# Recommendations count
recommendations = results.get("recommendations", [])
ax2.bar(['Recommendations'], [len(recommendations)], color='lightblue')
ax2.set_title('Number of Recommendations', fontweight='bold')
ax2.set_ylabel('Count')
plt.tight_layout()
return self.fig_to_html(fig)
def fig_to_html(self, fig):
"""Convert matplotlib figure to HTML."""
import io
import base64
buf = io.BytesIO()
fig.savefig(buf, format='png', bbox_inches='tight', dpi=100)
buf.seek(0)
img_str = base64.b64encode(buf.read()).decode()
buf.close()
return f'<img src="data:image/png;base64,{img_str}" style="max-width: 100%; height: auto;"/>'
def complete_appointment(appointment_id):
"""
Complete an appointment by calling the Flask API.
Args:
appointment_id: The appointment ID to complete
Returns:
dict: Response from the API
"""
try:
# Get Flask URLs from configuration
flask_urls = get_flask_urls()
payload = {"appointment_id": appointment_id}
for flask_api_url in flask_urls:
try:
logger.info(f"Trying to connect to: {flask_api_url}")
response = requests.post(flask_api_url, json=payload, timeout=TIMEOUT_SETTINGS["connection_timeout"])
if response.status_code == 200:
return {"status": "success", "message": "Appointment completed successfully"}
elif response.status_code == 404:
return {"status": "error", "message": "Appointment not found"}
else:
logger.warning(f"Unexpected response from {flask_api_url}: {response.status_code}")
continue
except requests.exceptions.ConnectionError:
logger.warning(f"Connection failed to {flask_api_url}")
continue
except requests.exceptions.Timeout:
logger.warning(f"Timeout connecting to {flask_api_url}")
continue
except Exception as e:
logger.warning(f"Error with {flask_api_url}: {e}")
continue
# If all URLs fail, return a helpful error message
return {
"status": "error",
"message": "Cannot connect to Flask app. Please ensure the Flask app is running and accessible."
}
except Exception as e:
logger.error(f"Error completing appointment: {e}")
return {"status": "error", "message": f"Error: {str(e)}"}
def create_interface():
"""Create and launch the Gradio interface."""
app = MediSyncApp()
# Example medical report for demo
example_report = """
CHEST X-RAY EXAMINATION
CLINICAL HISTORY: 55-year-old male with cough and fever.
FINDINGS: The heart size is at the upper limits of normal. The lungs are clear without focal consolidation,
effusion, or pneumothorax. There is mild prominence of the pulmonary vasculature. No pleural effusion is seen.
There is a small nodular opacity noted in the right lower lobe measuring approximately 8mm, which is suspicious
and warrants further investigation. The mediastinum is unremarkable. The visualized bony structures show no acute abnormalities.
IMPRESSION:
1. Mild cardiomegaly.
2. 8mm nodular opacity in the right lower lobe, recommend follow-up CT for further evaluation.
3. No acute pulmonary parenchymal abnormality.
RECOMMENDATIONS: Follow-up chest CT to further characterize the nodular opacity in the right lower lobe.
"""
# Get sample image path if available
sample_images_dir = Path(parent_dir) / "data" / "sample"
sample_images = list(sample_images_dir.glob("*.png")) + list(
sample_images_dir.glob("*.jpg")
)
sample_image_path = None
if sample_images:
sample_image_path = str(sample_images[0])
# Define interface
with gr.Blocks(
title="MediSync: Multi-Modal Medical Analysis System", theme=gr.themes.Soft()
) as interface:
gr.Markdown("""
# MediSync: Multi-Modal Medical Analysis System
This AI-powered healthcare solution combines X-ray image analysis with patient report text processing
to provide comprehensive medical insights.
## How to Use
1. Upload a chest X-ray image
2. Enter the corresponding medical report text
3. Choose the analysis type: image-only, text-only, or multimodal (combined)
4. Click "End Consultation" when finished to complete your appointment
""")
# Add appointment ID input with Python-based population
with gr.Row():
# Get appointment ID from URL parameters if available
import urllib.parse
try:
# This will be set by JavaScript, but we can also try to get it server-side
url_params = {}
if hasattr(gr, 'get_current_url'):
current_url = gr.get_current_url()
if current_url:
parsed = urllib.parse.urlparse(current_url)
url_params = urllib.parse.parse_qs(parsed.query)
default_appointment_id = url_params.get('appointment_id', [''])[0]
except:
default_appointment_id = ""
appointment_id_input = gr.Textbox(
label="Appointment ID",
placeholder="Enter your appointment ID here...",
info="This will be automatically populated if you came from the doctors page",
value=default_appointment_id
)
with gr.Tab("Multimodal Analysis"):
with gr.Row():
with gr.Column():
multi_img_input = gr.Image(label="Upload X-ray Image", type="pil")
multi_img_enhance = gr.Button("Enhance Image")
multi_text_input = gr.Textbox(
label="Enter Medical Report Text",
placeholder="Enter the radiologist's report text here...",
lines=10,
value=example_report if sample_image_path is None else None,
)
multi_analyze_btn = gr.Button(
"Analyze Image & Text", variant="primary"
)
with gr.Column():
multi_results = gr.HTML(label="Analysis Results")
multi_plot = gr.HTML(label="Visualization")
# Set up examples if sample image exists
if sample_image_path:
gr.Examples(
examples=[[sample_image_path, example_report]],
inputs=[multi_img_input, multi_text_input],
label="Example X-ray and Report",
)
with gr.Tab("Image Analysis"):
with gr.Row():
with gr.Column():
img_input = gr.Image(label="Upload X-ray Image", type="pil")
img_enhance = gr.Button("Enhance Image")
img_analyze_btn = gr.Button("Analyze Image", variant="primary")
with gr.Column():
img_output = gr.Image(label="Processed Image")
img_results = gr.HTML(label="Analysis Results")
img_plot = gr.HTML(label="Visualization")
# Set up example if sample image exists
if sample_image_path:
gr.Examples(
examples=[[sample_image_path]],
inputs=[img_input],
label="Example X-ray Image",
)
with gr.Tab("Text Analysis"):
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label="Enter Medical Report Text",
placeholder="Enter the radiologist's report text here...",
lines=10,
value=example_report,
)
text_analyze_btn = gr.Button("Analyze Text", variant="primary")
with gr.Column():
text_output = gr.Textbox(label="Processed Text")
text_results = gr.HTML(label="Analysis Results")
text_plot = gr.HTML(label="Entity Visualization")
# Set up example
gr.Examples(
examples=[[example_report]],
inputs=[text_input],
label="Example Medical Report",
)
# End Consultation Section
with gr.Row():
with gr.Column():
end_consultation_btn = gr.Button(
"End Consultation",
variant="stop",
size="lg",
elem_classes=["end-consultation-btn"]
)
end_consultation_status = gr.HTML(label="Status")
with gr.Tab("About"):
gr.Markdown("""
## About MediSync
MediSync is an AI-powered healthcare solution that uses multi-modal analysis to provide comprehensive insights from medical images and reports.
### Key Features
- **X-ray Image Analysis**: Detects abnormalities in chest X-rays using pre-trained vision models
- **Medical Report Processing**: Extracts key information from patient reports using NLP models
- **Multi-modal Integration**: Combines insights from both image and text data for more accurate analysis
### Models Used
- **X-ray Analysis**: facebook/deit-base-patch16-224-medical-cxr
- **Medical Text Analysis**: medicalai/ClinicalBERT
### Important Disclaimer
This tool is for educational and research purposes only. It is not intended to provide medical advice or replace professional healthcare. Always consult with qualified healthcare providers for medical decisions.
""")
# Set up event handlers
multi_img_enhance.click(
app.enhance_image, inputs=multi_img_input, outputs=multi_img_input
)
multi_analyze_btn.click(
app.analyze_multimodal,
inputs=[multi_img_input, multi_text_input],
outputs=[multi_results, multi_plot],
)
img_enhance.click(app.enhance_image, inputs=img_input, outputs=img_output)
img_analyze_btn.click(
app.analyze_image,
inputs=img_input,
outputs=[img_output, img_results, img_plot],
)
text_analyze_btn.click(
app.analyze_text,
inputs=text_input,
outputs=[text_output, text_results, text_plot],
)
# End consultation handler
def handle_end_consultation(appointment_id):
if not appointment_id or appointment_id.strip() == "":
return "<div style='color: red; padding: 10px; background-color: #ffe6e6; border-radius: 5px;'>Please enter your appointment ID first.</div>"
# Try to complete the appointment
result = complete_appointment(appointment_id.strip())
if result["status"] == "success":
# Get doctors page URLs from configuration
doctors_urls = get_doctors_page_urls()
# Create success message with redirect button
html_response = f"""
<div style='color: green; padding: 15px; background-color: #e6ffe6; border-radius: 5px; margin: 10px 0;'>
<h3>✅ Consultation Completed Successfully!</h3>
<p>{result['message']}</p>
<p>Your appointment has been marked as completed.</p>
<button onclick="window.open('{doctors_urls['local']}', '_blank')"
style="background-color: #007bff; color: white; padding: 10px 20px; border: none; border-radius: 5px; cursor: pointer; margin-top: 10px;">
Return to Doctors Page (Local)
</button>
<button onclick="window.open('{doctors_urls['production']}', '_blank')"
style="background-color: #28a745; color: white; padding: 10px 20px; border: none; border-radius: 5px; cursor: pointer; margin-top: 10px; margin-left: 10px;">
Return to Doctors Page (Production)
</button>
</div>
"""
else:
# Handle connection failure gracefully
if "Cannot connect to Flask app" in result['message']:
# Show a helpful message with manual completion instructions
html_response = f"""
<div style='color: orange; padding: 15px; background-color: #fff3cd; border-radius: 5px; margin: 10px 0;'>
<h3>⚠️ Consultation Ready to Complete</h3>
<p>Your consultation analysis is complete! However, we cannot automatically mark your appointment as completed because the Flask app is not accessible from this environment.</p>
<p><strong>Appointment ID:</strong> {appointment_id.strip()}</p>
<p><strong>Next Steps:</strong></p>
<ol>
<li>Copy your appointment ID: <code>{appointment_id.strip()}</code></li>
<li>Return to your Flask app (doctors page)</li>
<li>Manually complete the appointment using the appointment ID</li>
</ol>
<div style="margin-top: 15px;">
<button onclick="window.open('http://127.0.0.1:600/complete_appointment_manual?appointment_id={appointment_id.strip()}', '_blank')"
style="background-color: #007bff; color: white; padding: 10px 20px; border: none; border-radius: 5px; cursor: pointer; margin-right: 10px;">
Complete Appointment
</button>
<button onclick="window.open('http://127.0.0.1:600/doctors', '_blank')"
style="background-color: #28a745; color: white; padding: 10px 20px; border: none; border-radius: 5px; cursor: pointer; margin-right: 10px;">
Return to Doctors Page
</button>
<button onclick="navigator.clipboard.writeText('{appointment_id.strip()}')"
style="background-color: #6c757d; color: white; padding: 10px 20px; border: none; border-radius: 5px; cursor: pointer;">
Copy Appointment ID
</button>
</div>
</div>
"""
else:
html_response = f"""
<div style='color: red; padding: 15px; background-color: #ffe6e6; border-radius: 5px; margin: 10px 0;'>
<h3>❌ Error Completing Consultation</h3>
<p>{result['message']}</p>
<p>Please try again or contact support if the problem persists.</p>
</div>
"""
return html_response
end_consultation_btn.click(
handle_end_consultation,
inputs=[appointment_id_input],
outputs=[end_consultation_status]
)
# Add custom CSS and JavaScript for better styling and functionality
gr.HTML("""
<style>
.end-consultation-btn {
background-color: #dc3545 !important;
border-color: #dc3545 !important;
color: white !important;
font-weight: bold !important;
}
.end-consultation-btn:hover {
background-color: #c82333 !important;
border-color: #bd2130 !important;
}
</style>
<script>
// Function to get URL parameters
function getUrlParameter(name) {
name = name.replace(/[[]/, '\\[').replace(/[\]]/, '\\]');
var regex = new RegExp('[\\?&]' + name + '=([^&#]*)');
var results = regex.exec(location.search);
return results === null ? '' : decodeURIComponent(results[1].replace(/\+/g, ' '));
}
// Function to populate appointment ID from URL
function populateAppointmentId() {
var appointmentId = getUrlParameter('appointment_id');
console.log('Found appointment ID:', appointmentId);
if (appointmentId) {
// Try multiple methods to find and populate the appointment ID input
var success = false;
// Method 1: Try by specific element ID
var elementById = document.getElementById('appointment_id_input');
if (elementById) {
elementById.value = appointmentId;
var event = new Event('input', { bubbles: true });
elementById.dispatchEvent(event);
console.log('Set appointment ID by ID to:', appointmentId);
success = true;
}
// Method 2: Try by placeholder text
if (!success) {
var selectors = [
'input[placeholder*="appointment ID"]',
'input[placeholder*="appointment_id"]',
'input[placeholder*="Appointment ID"]',
'textarea[placeholder*="appointment ID"]',
'textarea[placeholder*="appointment_id"]',
'textarea[placeholder*="Appointment ID"]'
];
for (var selector of selectors) {
var elements = document.querySelectorAll(selector);
for (var element of elements) {
console.log('Found element by placeholder:', element);
element.value = appointmentId;
var event = new Event('input', { bubbles: true });
element.dispatchEvent(event);
console.log('Set appointment ID by placeholder to:', appointmentId);
success = true;
break;
}
if (success) break;
}
}
// Method 3: Try by label text
if (!success) {
var labels = document.querySelectorAll('label');
for (var label of labels) {
if (label.textContent && label.textContent.toLowerCase().includes('appointment id')) {
var input = label.nextElementSibling;
if (input && (input.tagName === 'INPUT' || input.tagName === 'TEXTAREA')) {
input.value = appointmentId;
var event = new Event('input', { bubbles: true });
input.dispatchEvent(event);
console.log('Set appointment ID by label to:', appointmentId);
success = true;
break;
}
}
}
}
// Method 4: Try by Gradio component attributes
if (!success) {
var gradioInputs = document.querySelectorAll('[data-testid="textbox"]');
for (var input of gradioInputs) {
var label = input.closest('.form').querySelector('label');
if (label && label.textContent.toLowerCase().includes('appointment id')) {
input.value = appointmentId;
var event = new Event('input', { bubbles: true });
input.dispatchEvent(event);
console.log('Set appointment ID by Gradio component to:', appointmentId);
success = true;
break;
}
}
}
if (!success) {
console.log('Could not find appointment ID input field');
// Log all input elements for debugging
var allInputs = document.querySelectorAll('input, textarea');
console.log('All input elements found:', allInputs.length);
for (var i = 0; i < allInputs.length; i++) {
console.log('Input', i, ':', allInputs[i].placeholder, allInputs[i].id, allInputs[i].className);
}
}
} else {
console.log('No appointment ID found in URL');
}
return success;
}
// Function to wait for Gradio to be ready
function waitForGradio() {
if (typeof gradio !== 'undefined' && gradio) {
console.log('Gradio detected, waiting for load...');
setTimeout(function() {
populateAppointmentId();
// Also try again after a longer delay
setTimeout(populateAppointmentId, 2000);
}, 1000);
} else {
console.log('Gradio not detected, trying direct population...');
populateAppointmentId();
// Try again after a delay
setTimeout(populateAppointmentId, 1000);
}
}
// Run when page loads
document.addEventListener('DOMContentLoaded', function() {
console.log('DOM loaded, attempting to populate appointment ID...');
waitForGradio();
});
// Also run when window loads
window.addEventListener('load', function() {
console.log('Window loaded, attempting to populate appointment ID...');
setTimeout(waitForGradio, 500);
});
// Monitor for dynamic content changes
var observer = new MutationObserver(function(mutations) {
mutations.forEach(function(mutation) {
if (mutation.type === 'childList') {
setTimeout(populateAppointmentId, 100);
}
});
});
// Start observing
observer.observe(document.body, {
childList: true,
subtree: true
});
</script>
""")
# Run the interface
interface.launch()
if __name__ == "__main__":
create_interface() |