updated the code UI ✅✅
Browse files- mediSync/app.py +227 -456
mediSync/app.py
CHANGED
|
@@ -400,7 +400,6 @@ import json
|
|
| 400 |
try:
|
| 401 |
from .config import get_flask_urls, get_doctors_page_urls, TIMEOUT_SETTINGS
|
| 402 |
except ImportError:
|
| 403 |
-
# Fallback configuration if config file is not available
|
| 404 |
def get_flask_urls():
|
| 405 |
return [
|
| 406 |
"http://127.0.0.1:600/complete_appointment",
|
|
@@ -408,20 +407,16 @@ except ImportError:
|
|
| 408 |
"https://your-flask-app-domain.com/complete_appointment",
|
| 409 |
"http://your-flask-app-ip:600/complete_appointment"
|
| 410 |
]
|
| 411 |
-
|
| 412 |
def get_doctors_page_urls():
|
| 413 |
return {
|
| 414 |
"local": "http://127.0.0.1:600/doctors",
|
| 415 |
"production": "https://your-flask-app-domain.com/doctors"
|
| 416 |
}
|
| 417 |
-
|
| 418 |
TIMEOUT_SETTINGS = {"connection_timeout": 5, "request_timeout": 10}
|
| 419 |
|
| 420 |
-
# Add parent directory to path
|
| 421 |
parent_dir = os.path.dirname(os.path.abspath(__file__))
|
| 422 |
sys.path.append(parent_dir)
|
| 423 |
|
| 424 |
-
# Configure logging
|
| 425 |
logging.basicConfig(
|
| 426 |
level=logging.INFO,
|
| 427 |
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
|
|
@@ -430,25 +425,18 @@ logging.basicConfig(
|
|
| 430 |
logger = logging.getLogger(__name__)
|
| 431 |
|
| 432 |
class MediSyncApp:
|
| 433 |
-
"""
|
| 434 |
-
Main application class for the MediSync multi-modal medical analysis system.
|
| 435 |
-
"""
|
| 436 |
-
|
| 437 |
def __init__(self):
|
| 438 |
-
"""Initialize the application and load models."""
|
| 439 |
self.logger = logging.getLogger(__name__)
|
| 440 |
self.logger.info("Initializing MediSync application")
|
| 441 |
-
self._temp_files = []
|
| 442 |
self.fusion_model = None
|
| 443 |
self.image_model = None
|
| 444 |
self.text_model = None
|
| 445 |
|
| 446 |
def __del__(self):
|
| 447 |
-
"""Cleanup temporary files on object destruction."""
|
| 448 |
self.cleanup_temp_files()
|
| 449 |
|
| 450 |
def cleanup_temp_files(self):
|
| 451 |
-
"""Clean up temporary files."""
|
| 452 |
for temp_file in self._temp_files:
|
| 453 |
try:
|
| 454 |
if os.path.exists(temp_file):
|
|
@@ -459,19 +447,10 @@ class MediSyncApp:
|
|
| 459 |
self._temp_files = []
|
| 460 |
|
| 461 |
def load_models(self):
|
| 462 |
-
"""
|
| 463 |
-
Load models if not already loaded.
|
| 464 |
-
|
| 465 |
-
Returns:
|
| 466 |
-
bool: True if models loaded successfully, False otherwise
|
| 467 |
-
"""
|
| 468 |
if self.fusion_model is not None:
|
| 469 |
return True
|
| 470 |
-
|
| 471 |
try:
|
| 472 |
self.logger.info("Loading models...")
|
| 473 |
-
# For now, we'll create a simple mock implementation
|
| 474 |
-
# You can replace this with your actual model loading code
|
| 475 |
self.logger.info("Models loaded successfully (mock implementation)")
|
| 476 |
return True
|
| 477 |
except Exception as e:
|
|
@@ -479,12 +458,9 @@ class MediSyncApp:
|
|
| 479 |
return False
|
| 480 |
|
| 481 |
def enhance_image(self, image):
|
| 482 |
-
"""Enhance the uploaded image."""
|
| 483 |
if image is None:
|
| 484 |
return None
|
| 485 |
-
|
| 486 |
try:
|
| 487 |
-
# Simple image enhancement (you can replace with actual enhancement logic)
|
| 488 |
enhanced_image = image
|
| 489 |
self.logger.info("Image enhanced successfully")
|
| 490 |
return enhanced_image
|
|
@@ -493,25 +469,12 @@ class MediSyncApp:
|
|
| 493 |
return image
|
| 494 |
|
| 495 |
def analyze_image(self, image):
|
| 496 |
-
"""
|
| 497 |
-
Analyze a medical image.
|
| 498 |
-
|
| 499 |
-
Args:
|
| 500 |
-
image: Image file uploaded through Gradio
|
| 501 |
-
|
| 502 |
-
Returns:
|
| 503 |
-
tuple: (image, image_results_html, plot_as_html)
|
| 504 |
-
"""
|
| 505 |
if image is None:
|
| 506 |
-
return None, "Please upload an image first
|
| 507 |
-
|
| 508 |
if not self.load_models():
|
| 509 |
-
return image, "Error: Models not loaded properly
|
| 510 |
-
|
| 511 |
try:
|
| 512 |
self.logger.info("Analyzing image")
|
| 513 |
-
|
| 514 |
-
# Mock analysis results (replace with actual model inference)
|
| 515 |
results = {
|
| 516 |
"primary_finding": "Normal chest X-ray",
|
| 517 |
"confidence": 0.85,
|
|
@@ -522,47 +485,26 @@ class MediSyncApp:
|
|
| 522 |
("Cardiomegaly", 0.05)
|
| 523 |
]
|
| 524 |
}
|
| 525 |
-
|
| 526 |
-
# Create visualization
|
| 527 |
fig = self.plot_image_prediction(
|
| 528 |
image,
|
| 529 |
results.get("predictions", []),
|
| 530 |
f"Primary Finding: {results.get('primary_finding', 'Unknown')}"
|
| 531 |
)
|
| 532 |
-
|
| 533 |
-
# Convert to HTML for display
|
| 534 |
plot_html = self.fig_to_html(fig)
|
| 535 |
-
plt.close(fig)
|
| 536 |
-
|
| 537 |
-
# Format results as HTML
|
| 538 |
html_result = self.format_image_results(results)
|
| 539 |
-
|
| 540 |
return image, html_result, plot_html
|
| 541 |
-
|
| 542 |
except Exception as e:
|
| 543 |
self.logger.error(f"Error in image analysis: {e}")
|
| 544 |
-
return image, f"Error analyzing image: {str(e)}", None
|
| 545 |
|
| 546 |
def analyze_text(self, text):
|
| 547 |
-
"""
|
| 548 |
-
Analyze medical report text.
|
| 549 |
-
|
| 550 |
-
Args:
|
| 551 |
-
text: Medical report text
|
| 552 |
-
|
| 553 |
-
Returns:
|
| 554 |
-
tuple: (processed_text, text_results_html, plot_as_html)
|
| 555 |
-
"""
|
| 556 |
if not text or text.strip() == "":
|
| 557 |
-
return "", "Please enter medical report text
|
| 558 |
-
|
| 559 |
if not self.load_models():
|
| 560 |
-
return text, "Error: Models not loaded properly
|
| 561 |
-
|
| 562 |
try:
|
| 563 |
self.logger.info("Analyzing text")
|
| 564 |
-
|
| 565 |
-
# Mock text analysis results (replace with actual model inference)
|
| 566 |
results = {
|
| 567 |
"entities": [
|
| 568 |
{"text": "chest X-ray", "type": "PROCEDURE", "confidence": 0.95},
|
|
@@ -572,40 +514,20 @@ class MediSyncApp:
|
|
| 572 |
"sentiment": "neutral",
|
| 573 |
"key_findings": ["Normal heart size", "Clear lungs", "8mm nodular opacity"]
|
| 574 |
}
|
| 575 |
-
|
| 576 |
-
# Format results as HTML
|
| 577 |
html_result = self.format_text_results(results)
|
| 578 |
-
|
| 579 |
-
# Create entity visualization
|
| 580 |
plot_html = self.create_entity_visualization(results["entities"])
|
| 581 |
-
|
| 582 |
return text, html_result, plot_html
|
| 583 |
-
|
| 584 |
except Exception as e:
|
| 585 |
self.logger.error(f"Error in text analysis: {e}")
|
| 586 |
-
return text, f"Error analyzing text: {str(e)}", None
|
| 587 |
|
| 588 |
def analyze_multimodal(self, image, text):
|
| 589 |
-
"""
|
| 590 |
-
Analyze both image and text together.
|
| 591 |
-
|
| 592 |
-
Args:
|
| 593 |
-
image: Medical image
|
| 594 |
-
text: Medical report text
|
| 595 |
-
|
| 596 |
-
Returns:
|
| 597 |
-
tuple: (results_html, plot_as_html)
|
| 598 |
-
"""
|
| 599 |
if image is None and (not text or text.strip() == ""):
|
| 600 |
-
return "Please provide either an image or text for analysis
|
| 601 |
-
|
| 602 |
if not self.load_models():
|
| 603 |
-
return "Error: Models not loaded properly
|
| 604 |
-
|
| 605 |
try:
|
| 606 |
self.logger.info("Performing multimodal analysis")
|
| 607 |
-
|
| 608 |
-
# Mock multimodal analysis results (replace with actual model inference)
|
| 609 |
results = {
|
| 610 |
"combined_finding": "Normal chest X-ray with minor findings",
|
| 611 |
"confidence": 0.92,
|
|
@@ -616,87 +538,64 @@ class MediSyncApp:
|
|
| 616 |
"Monitor for any changes in symptoms"
|
| 617 |
]
|
| 618 |
}
|
| 619 |
-
|
| 620 |
-
# Format results as HTML
|
| 621 |
html_result = self.format_multimodal_results(results)
|
| 622 |
-
|
| 623 |
-
# Create combined visualization
|
| 624 |
plot_html = self.create_multimodal_visualization(results)
|
| 625 |
-
|
| 626 |
return html_result, plot_html
|
| 627 |
-
|
| 628 |
except Exception as e:
|
| 629 |
self.logger.error(f"Error in multimodal analysis: {e}")
|
| 630 |
-
return f"Error in multimodal analysis: {str(e)}", None
|
| 631 |
|
| 632 |
def format_image_results(self, results):
|
| 633 |
-
"""Format image analysis results as HTML."""
|
| 634 |
html_result = f"""
|
| 635 |
-
<div
|
| 636 |
-
<h2
|
| 637 |
-
<p><
|
| 638 |
-
<p><
|
| 639 |
-
<p><
|
| 640 |
-
|
| 641 |
-
<h3>Top Predictions:</h3>
|
| 642 |
<ul>
|
| 643 |
"""
|
| 644 |
-
|
| 645 |
for label, prob in results.get("predictions", [])[:5]:
|
| 646 |
html_result += f"<li>{label}: {prob:.1%}</li>"
|
| 647 |
-
|
| 648 |
html_result += "</ul></div>"
|
| 649 |
return html_result
|
| 650 |
|
| 651 |
def format_text_results(self, results):
|
| 652 |
-
"""Format text analysis results as HTML."""
|
| 653 |
html_result = f"""
|
| 654 |
-
<div
|
| 655 |
-
<h2
|
| 656 |
-
<p><
|
| 657 |
-
|
| 658 |
-
<h3>Key Findings:</h3>
|
| 659 |
<ul>
|
| 660 |
"""
|
| 661 |
-
|
| 662 |
for finding in results.get("key_findings", []):
|
| 663 |
html_result += f"<li>{finding}</li>"
|
| 664 |
-
|
| 665 |
html_result += "</ul>"
|
| 666 |
-
|
| 667 |
-
html_result += "<h3>Extracted Entities:</h3><ul>"
|
| 668 |
for entity in results.get("entities", [])[:5]:
|
| 669 |
html_result += f"<li><strong>{entity['text']}</strong> ({entity['type']}) - {entity['confidence']:.1%}</li>"
|
| 670 |
-
|
| 671 |
html_result += "</ul></div>"
|
| 672 |
return html_result
|
| 673 |
|
| 674 |
def format_multimodal_results(self, results):
|
| 675 |
-
"""Format multimodal analysis results as HTML."""
|
| 676 |
html_result = f"""
|
| 677 |
-
<div
|
| 678 |
-
<h2
|
| 679 |
-
<p><
|
| 680 |
-
<p><
|
| 681 |
-
|
| 682 |
-
<h3>Image Contribution:</h3>
|
| 683 |
<p>{results.get("image_contribution", "No image analysis available")}</p>
|
| 684 |
-
|
| 685 |
-
<h3>Text Contribution:</h3>
|
| 686 |
<p>{results.get("text_contribution", "No text analysis available")}</p>
|
| 687 |
-
|
| 688 |
-
<h3>Recommendations:</h3>
|
| 689 |
<ul>
|
| 690 |
"""
|
| 691 |
-
|
| 692 |
for rec in results.get("recommendations", []):
|
| 693 |
html_result += f"<li>{rec}</li>"
|
| 694 |
-
|
| 695 |
html_result += "</ul></div>"
|
| 696 |
return html_result
|
| 697 |
|
| 698 |
def plot_image_prediction(self, image, predictions, title):
|
| 699 |
-
"""Create visualization for image predictions."""
|
| 700 |
fig, ax = plt.subplots(figsize=(10, 6))
|
| 701 |
ax.imshow(image)
|
| 702 |
ax.set_title(title, fontsize=14, fontweight='bold')
|
|
@@ -704,80 +603,53 @@ class MediSyncApp:
|
|
| 704 |
return fig
|
| 705 |
|
| 706 |
def create_entity_visualization(self, entities):
|
| 707 |
-
"""Create visualization for text entities."""
|
| 708 |
if not entities:
|
| 709 |
return "<p>No entities found in text.</p>"
|
| 710 |
-
|
| 711 |
fig, ax = plt.subplots(figsize=(10, 6))
|
| 712 |
-
|
| 713 |
entity_types = {}
|
| 714 |
for entity in entities:
|
| 715 |
entity_type = entity['type']
|
| 716 |
if entity_type not in entity_types:
|
| 717 |
entity_types[entity_type] = 0
|
| 718 |
entity_types[entity_type] += 1
|
| 719 |
-
|
| 720 |
if entity_types:
|
| 721 |
-
ax.bar(entity_types.keys(), entity_types.values(), color='
|
| 722 |
ax.set_title('Entity Types Found in Text', fontsize=14, fontweight='bold')
|
| 723 |
ax.set_ylabel('Count')
|
| 724 |
plt.xticks(rotation=45)
|
| 725 |
-
|
| 726 |
return self.fig_to_html(fig)
|
| 727 |
|
| 728 |
def create_multimodal_visualization(self, results):
|
| 729 |
-
"""Create visualization for multimodal results."""
|
| 730 |
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6))
|
| 731 |
-
|
| 732 |
-
# Confidence visualization
|
| 733 |
confidence = results.get("confidence", 0)
|
| 734 |
-
ax1.pie([confidence, 1-confidence], labels=['Confidence', 'Uncertainty'],
|
| 735 |
-
colors=['
|
| 736 |
ax1.set_title('Analysis Confidence', fontweight='bold')
|
| 737 |
-
|
| 738 |
-
# Recommendations count
|
| 739 |
recommendations = results.get("recommendations", [])
|
| 740 |
-
ax2.bar(['Recommendations'], [len(recommendations)], color='
|
| 741 |
ax2.set_title('Number of Recommendations', fontweight='bold')
|
| 742 |
ax2.set_ylabel('Count')
|
| 743 |
-
|
| 744 |
plt.tight_layout()
|
| 745 |
return self.fig_to_html(fig)
|
| 746 |
|
| 747 |
def fig_to_html(self, fig):
|
| 748 |
-
"""Convert matplotlib figure to HTML."""
|
| 749 |
import io
|
| 750 |
import base64
|
| 751 |
-
|
| 752 |
buf = io.BytesIO()
|
| 753 |
fig.savefig(buf, format='png', bbox_inches='tight', dpi=100)
|
| 754 |
buf.seek(0)
|
| 755 |
img_str = base64.b64encode(buf.read()).decode()
|
| 756 |
buf.close()
|
| 757 |
-
|
| 758 |
-
return f'<img src="data:image/png;base64,{img_str}" style="max-width: 100%; height: auto;"/>'
|
| 759 |
|
| 760 |
def complete_appointment(appointment_id):
|
| 761 |
-
"""
|
| 762 |
-
Complete an appointment by calling the Flask API.
|
| 763 |
-
|
| 764 |
-
Args:
|
| 765 |
-
appointment_id: The appointment ID to complete
|
| 766 |
-
|
| 767 |
-
Returns:
|
| 768 |
-
dict: Response from the API
|
| 769 |
-
"""
|
| 770 |
try:
|
| 771 |
-
# Get Flask URLs from configuration
|
| 772 |
flask_urls = get_flask_urls()
|
| 773 |
-
|
| 774 |
payload = {"appointment_id": appointment_id}
|
| 775 |
-
|
| 776 |
for flask_api_url in flask_urls:
|
| 777 |
try:
|
| 778 |
logger.info(f"Trying to connect to: {flask_api_url}")
|
| 779 |
response = requests.post(flask_api_url, json=payload, timeout=TIMEOUT_SETTINGS["connection_timeout"])
|
| 780 |
-
|
| 781 |
if response.status_code == 200:
|
| 782 |
return {"status": "success", "message": "Appointment completed successfully"}
|
| 783 |
elif response.status_code == 404:
|
|
@@ -785,7 +657,6 @@ def complete_appointment(appointment_id):
|
|
| 785 |
else:
|
| 786 |
logger.warning(f"Unexpected response from {flask_api_url}: {response.status_code}")
|
| 787 |
continue
|
| 788 |
-
|
| 789 |
except requests.exceptions.ConnectionError:
|
| 790 |
logger.warning(f"Connection failed to {flask_api_url}")
|
| 791 |
continue
|
|
@@ -795,198 +666,251 @@ def complete_appointment(appointment_id):
|
|
| 795 |
except Exception as e:
|
| 796 |
logger.warning(f"Error with {flask_api_url}: {e}")
|
| 797 |
continue
|
| 798 |
-
|
| 799 |
-
# If all URLs fail, return a helpful error message
|
| 800 |
return {
|
| 801 |
-
"status": "error",
|
| 802 |
"message": "Cannot connect to Flask app. Please ensure the Flask app is running and accessible."
|
| 803 |
}
|
| 804 |
-
|
| 805 |
except Exception as e:
|
| 806 |
logger.error(f"Error completing appointment: {e}")
|
| 807 |
return {"status": "error", "message": f"Error: {str(e)}"}
|
| 808 |
|
| 809 |
def create_interface():
|
| 810 |
-
"""Create and launch the Gradio interface."""
|
| 811 |
-
|
| 812 |
app = MediSyncApp()
|
| 813 |
-
|
| 814 |
-
# Example medical report for demo
|
| 815 |
example_report = """
|
| 816 |
CHEST X-RAY EXAMINATION
|
| 817 |
-
|
| 818 |
CLINICAL HISTORY: 55-year-old male with cough and fever.
|
| 819 |
-
|
| 820 |
FINDINGS: The heart size is at the upper limits of normal. The lungs are clear without focal consolidation,
|
| 821 |
effusion, or pneumothorax. There is mild prominence of the pulmonary vasculature. No pleural effusion is seen.
|
| 822 |
There is a small nodular opacity noted in the right lower lobe measuring approximately 8mm, which is suspicious
|
| 823 |
and warrants further investigation. The mediastinum is unremarkable. The visualized bony structures show no acute abnormalities.
|
| 824 |
-
|
| 825 |
IMPRESSION:
|
| 826 |
1. Mild cardiomegaly.
|
| 827 |
2. 8mm nodular opacity in the right lower lobe, recommend follow-up CT for further evaluation.
|
| 828 |
3. No acute pulmonary parenchymal abnormality.
|
| 829 |
-
|
| 830 |
RECOMMENDATIONS: Follow-up chest CT to further characterize the nodular opacity in the right lower lobe.
|
| 831 |
"""
|
| 832 |
-
|
| 833 |
-
# Get sample image path if available
|
| 834 |
sample_images_dir = Path(parent_dir) / "data" / "sample"
|
| 835 |
-
sample_images = list(sample_images_dir.glob("*.png")) + list(
|
| 836 |
-
sample_images_dir.glob("*.jpg")
|
| 837 |
-
)
|
| 838 |
-
|
| 839 |
sample_image_path = None
|
| 840 |
if sample_images:
|
| 841 |
sample_image_path = str(sample_images[0])
|
| 842 |
|
| 843 |
-
# Define interface
|
| 844 |
with gr.Blocks(
|
| 845 |
-
title="MediSync: Multi-Modal Medical Analysis System",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 846 |
) as interface:
|
| 847 |
-
gr.
|
| 848 |
-
|
| 849 |
-
|
| 850 |
-
|
| 851 |
-
|
| 852 |
-
|
| 853 |
-
|
| 854 |
-
|
| 855 |
-
|
| 856 |
-
|
| 857 |
-
|
| 858 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 859 |
|
| 860 |
-
# Add appointment ID input with Python-based population
|
| 861 |
with gr.Row():
|
| 862 |
-
# Get appointment ID from URL parameters if available
|
| 863 |
import urllib.parse
|
| 864 |
try:
|
| 865 |
-
# This will be set by JavaScript, but we can also try to get it server-side
|
| 866 |
url_params = {}
|
| 867 |
if hasattr(gr, 'get_current_url'):
|
| 868 |
current_url = gr.get_current_url()
|
| 869 |
if current_url:
|
| 870 |
parsed = urllib.parse.urlparse(current_url)
|
| 871 |
url_params = urllib.parse.parse_qs(parsed.query)
|
| 872 |
-
|
| 873 |
default_appointment_id = url_params.get('appointment_id', [''])[0]
|
| 874 |
except:
|
| 875 |
default_appointment_id = ""
|
| 876 |
-
|
| 877 |
appointment_id_input = gr.Textbox(
|
| 878 |
label="Appointment ID",
|
| 879 |
placeholder="Enter your appointment ID here...",
|
| 880 |
info="This will be automatically populated if you came from the doctors page",
|
| 881 |
-
value=default_appointment_id
|
|
|
|
| 882 |
)
|
| 883 |
|
| 884 |
-
with gr.
|
| 885 |
-
with gr.
|
| 886 |
-
with gr.
|
| 887 |
-
|
| 888 |
-
|
| 889 |
-
|
| 890 |
-
|
| 891 |
-
|
| 892 |
-
|
| 893 |
-
|
| 894 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 895 |
)
|
| 896 |
|
| 897 |
-
|
| 898 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 899 |
)
|
| 900 |
|
| 901 |
-
|
| 902 |
-
|
| 903 |
-
|
| 904 |
-
|
| 905 |
-
|
| 906 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 907 |
gr.Examples(
|
| 908 |
-
examples=[[
|
| 909 |
-
inputs=[
|
| 910 |
-
label="Example
|
| 911 |
)
|
| 912 |
|
| 913 |
-
|
| 914 |
-
|
| 915 |
-
|
| 916 |
-
|
| 917 |
-
|
| 918 |
-
|
| 919 |
-
|
| 920 |
-
|
| 921 |
-
|
| 922 |
-
|
| 923 |
-
|
| 924 |
-
|
| 925 |
-
|
| 926 |
-
|
| 927 |
-
|
| 928 |
-
|
| 929 |
-
|
| 930 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 931 |
)
|
| 932 |
|
| 933 |
-
with gr.Tab("Text Analysis"):
|
| 934 |
-
with gr.Row():
|
| 935 |
-
with gr.Column():
|
| 936 |
-
text_input = gr.Textbox(
|
| 937 |
-
label="Enter Medical Report Text",
|
| 938 |
-
placeholder="Enter the radiologist's report text here...",
|
| 939 |
-
lines=10,
|
| 940 |
-
value=example_report,
|
| 941 |
-
)
|
| 942 |
-
text_analyze_btn = gr.Button("Analyze Text", variant="primary")
|
| 943 |
-
|
| 944 |
-
with gr.Column():
|
| 945 |
-
text_output = gr.Textbox(label="Processed Text")
|
| 946 |
-
text_results = gr.HTML(label="Analysis Results")
|
| 947 |
-
text_plot = gr.HTML(label="Entity Visualization")
|
| 948 |
-
|
| 949 |
-
# Set up example
|
| 950 |
-
gr.Examples(
|
| 951 |
-
examples=[[example_report]],
|
| 952 |
-
inputs=[text_input],
|
| 953 |
-
label="Example Medical Report",
|
| 954 |
-
)
|
| 955 |
-
|
| 956 |
-
# End Consultation Section
|
| 957 |
with gr.Row():
|
| 958 |
with gr.Column():
|
| 959 |
end_consultation_btn = gr.Button(
|
| 960 |
-
"End Consultation",
|
| 961 |
-
variant="stop",
|
| 962 |
size="lg",
|
| 963 |
-
elem_classes=["end-consultation-btn"]
|
|
|
|
| 964 |
)
|
| 965 |
-
end_consultation_status = gr.HTML(label="Status")
|
| 966 |
-
|
| 967 |
-
with gr.Tab("About"):
|
| 968 |
-
gr.Markdown("""
|
| 969 |
-
## About MediSync
|
| 970 |
-
|
| 971 |
-
MediSync is an AI-powered healthcare solution that uses multi-modal analysis to provide comprehensive insights from medical images and reports.
|
| 972 |
-
|
| 973 |
-
### Key Features
|
| 974 |
-
|
| 975 |
-
- **X-ray Image Analysis**: Detects abnormalities in chest X-rays using pre-trained vision models
|
| 976 |
-
- **Medical Report Processing**: Extracts key information from patient reports using NLP models
|
| 977 |
-
- **Multi-modal Integration**: Combines insights from both image and text data for more accurate analysis
|
| 978 |
-
|
| 979 |
-
### Models Used
|
| 980 |
-
|
| 981 |
-
- **X-ray Analysis**: facebook/deit-base-patch16-224-medical-cxr
|
| 982 |
-
- **Medical Text Analysis**: medicalai/ClinicalBERT
|
| 983 |
-
|
| 984 |
-
### Important Disclaimer
|
| 985 |
-
|
| 986 |
-
This tool is for educational and research purposes only. It is not intended to provide medical advice or replace professional healthcare. Always consult with qualified healthcare providers for medical decisions.
|
| 987 |
-
""")
|
| 988 |
|
| 989 |
-
#
|
| 990 |
multi_img_enhance.click(
|
| 991 |
app.enhance_image, inputs=multi_img_input, outputs=multi_img_input
|
| 992 |
)
|
|
@@ -995,35 +919,26 @@ def create_interface():
|
|
| 995 |
inputs=[multi_img_input, multi_text_input],
|
| 996 |
outputs=[multi_results, multi_plot],
|
| 997 |
)
|
| 998 |
-
|
| 999 |
img_enhance.click(app.enhance_image, inputs=img_input, outputs=img_output)
|
| 1000 |
img_analyze_btn.click(
|
| 1001 |
app.analyze_image,
|
| 1002 |
inputs=img_input,
|
| 1003 |
outputs=[img_output, img_results, img_plot],
|
| 1004 |
)
|
| 1005 |
-
|
| 1006 |
text_analyze_btn.click(
|
| 1007 |
app.analyze_text,
|
| 1008 |
inputs=text_input,
|
| 1009 |
outputs=[text_output, text_results, text_plot],
|
| 1010 |
)
|
| 1011 |
|
| 1012 |
-
# End consultation handler
|
| 1013 |
def handle_end_consultation(appointment_id):
|
| 1014 |
if not appointment_id or appointment_id.strip() == "":
|
| 1015 |
-
return "<div
|
| 1016 |
-
|
| 1017 |
-
# Try to complete the appointment
|
| 1018 |
result = complete_appointment(appointment_id.strip())
|
| 1019 |
-
|
| 1020 |
if result["status"] == "success":
|
| 1021 |
-
# Get doctors page URLs from configuration
|
| 1022 |
doctors_urls = get_doctors_page_urls()
|
| 1023 |
-
|
| 1024 |
-
# Create success message with redirect button
|
| 1025 |
html_response = f"""
|
| 1026 |
-
<div style='color:
|
| 1027 |
<h3>✅ Consultation Completed Successfully!</h3>
|
| 1028 |
<p>{result['message']}</p>
|
| 1029 |
<p>Your appointment has been marked as completed.</p>
|
|
@@ -1038,11 +953,9 @@ def create_interface():
|
|
| 1038 |
</div>
|
| 1039 |
"""
|
| 1040 |
else:
|
| 1041 |
-
# Handle connection failure gracefully
|
| 1042 |
if "Cannot connect to Flask app" in result['message']:
|
| 1043 |
-
# Show a helpful message with manual completion instructions
|
| 1044 |
html_response = f"""
|
| 1045 |
-
<div style='color:
|
| 1046 |
<h3>⚠️ Consultation Ready to Complete</h3>
|
| 1047 |
<p>Your consultation analysis is complete! However, we cannot automatically mark your appointment as completed because the Flask app is not accessible from this environment.</p>
|
| 1048 |
<p><strong>Appointment ID:</strong> {appointment_id.strip()}</p>
|
|
@@ -1070,13 +983,12 @@ def create_interface():
|
|
| 1070 |
"""
|
| 1071 |
else:
|
| 1072 |
html_response = f"""
|
| 1073 |
-
<div style='
|
| 1074 |
<h3>❌ Error Completing Consultation</h3>
|
| 1075 |
<p>{result['message']}</p>
|
| 1076 |
<p>Please try again or contact support if the problem persists.</p>
|
| 1077 |
</div>
|
| 1078 |
"""
|
| 1079 |
-
|
| 1080 |
return html_response
|
| 1081 |
|
| 1082 |
end_consultation_btn.click(
|
|
@@ -1085,173 +997,32 @@ def create_interface():
|
|
| 1085 |
outputs=[end_consultation_status]
|
| 1086 |
)
|
| 1087 |
|
| 1088 |
-
# Add custom CSS and JavaScript for better styling and functionality
|
| 1089 |
gr.HTML("""
|
| 1090 |
-
<style>
|
| 1091 |
-
.end-consultation-btn {
|
| 1092 |
-
background-color: #dc3545 !important;
|
| 1093 |
-
border-color: #dc3545 !important;
|
| 1094 |
-
color: white !important;
|
| 1095 |
-
font-weight: bold !important;
|
| 1096 |
-
}
|
| 1097 |
-
.end-consultation-btn:hover {
|
| 1098 |
-
background-color: #c82333 !important;
|
| 1099 |
-
border-color: #bd2130 !important;
|
| 1100 |
-
}
|
| 1101 |
-
</style>
|
| 1102 |
-
|
| 1103 |
<script>
|
| 1104 |
-
// Function to get URL parameters
|
| 1105 |
function getUrlParameter(name) {
|
| 1106 |
name = name.replace(/[[]/, '\\[').replace(/[\]]/, '\\]');
|
| 1107 |
var regex = new RegExp('[\\?&]' + name + '=([^&#]*)');
|
| 1108 |
var results = regex.exec(location.search);
|
| 1109 |
-
return results === null ? '' : decodeURIComponent(results[1].replace(
|
| 1110 |
}
|
| 1111 |
-
|
| 1112 |
-
// Function to populate appointment ID from URL
|
| 1113 |
function populateAppointmentId() {
|
| 1114 |
var appointmentId = getUrlParameter('appointment_id');
|
| 1115 |
-
console.log('Found appointment ID:', appointmentId);
|
| 1116 |
-
|
| 1117 |
if (appointmentId) {
|
| 1118 |
-
|
| 1119 |
-
|
| 1120 |
-
|
| 1121 |
-
// Method 1: Try by specific element ID
|
| 1122 |
-
var elementById = document.getElementById('appointment_id_input');
|
| 1123 |
-
if (elementById) {
|
| 1124 |
-
elementById.value = appointmentId;
|
| 1125 |
var event = new Event('input', { bubbles: true });
|
| 1126 |
-
|
| 1127 |
-
console.log('Set appointment ID by ID to:', appointmentId);
|
| 1128 |
-
success = true;
|
| 1129 |
-
}
|
| 1130 |
-
|
| 1131 |
-
// Method 2: Try by placeholder text
|
| 1132 |
-
if (!success) {
|
| 1133 |
-
var selectors = [
|
| 1134 |
-
'input[placeholder*="appointment ID"]',
|
| 1135 |
-
'input[placeholder*="appointment_id"]',
|
| 1136 |
-
'input[placeholder*="Appointment ID"]',
|
| 1137 |
-
'textarea[placeholder*="appointment ID"]',
|
| 1138 |
-
'textarea[placeholder*="appointment_id"]',
|
| 1139 |
-
'textarea[placeholder*="Appointment ID"]'
|
| 1140 |
-
];
|
| 1141 |
-
|
| 1142 |
-
for (var selector of selectors) {
|
| 1143 |
-
var elements = document.querySelectorAll(selector);
|
| 1144 |
-
for (var element of elements) {
|
| 1145 |
-
console.log('Found element by placeholder:', element);
|
| 1146 |
-
element.value = appointmentId;
|
| 1147 |
-
var event = new Event('input', { bubbles: true });
|
| 1148 |
-
element.dispatchEvent(event);
|
| 1149 |
-
console.log('Set appointment ID by placeholder to:', appointmentId);
|
| 1150 |
-
success = true;
|
| 1151 |
-
break;
|
| 1152 |
-
}
|
| 1153 |
-
if (success) break;
|
| 1154 |
-
}
|
| 1155 |
-
}
|
| 1156 |
-
|
| 1157 |
-
// Method 3: Try by label text
|
| 1158 |
-
if (!success) {
|
| 1159 |
-
var labels = document.querySelectorAll('label');
|
| 1160 |
-
for (var label of labels) {
|
| 1161 |
-
if (label.textContent && label.textContent.toLowerCase().includes('appointment id')) {
|
| 1162 |
-
var input = label.nextElementSibling;
|
| 1163 |
-
if (input && (input.tagName === 'INPUT' || input.tagName === 'TEXTAREA')) {
|
| 1164 |
-
input.value = appointmentId;
|
| 1165 |
-
var event = new Event('input', { bubbles: true });
|
| 1166 |
-
input.dispatchEvent(event);
|
| 1167 |
-
console.log('Set appointment ID by label to:', appointmentId);
|
| 1168 |
-
success = true;
|
| 1169 |
-
break;
|
| 1170 |
-
}
|
| 1171 |
-
}
|
| 1172 |
-
}
|
| 1173 |
-
}
|
| 1174 |
-
|
| 1175 |
-
// Method 4: Try by Gradio component attributes
|
| 1176 |
-
if (!success) {
|
| 1177 |
-
var gradioInputs = document.querySelectorAll('[data-testid="textbox"]');
|
| 1178 |
-
for (var input of gradioInputs) {
|
| 1179 |
-
var label = input.closest('.form').querySelector('label');
|
| 1180 |
-
if (label && label.textContent.toLowerCase().includes('appointment id')) {
|
| 1181 |
-
input.value = appointmentId;
|
| 1182 |
-
var event = new Event('input', { bubbles: true });
|
| 1183 |
-
input.dispatchEvent(event);
|
| 1184 |
-
console.log('Set appointment ID by Gradio component to:', appointmentId);
|
| 1185 |
-
success = true;
|
| 1186 |
-
break;
|
| 1187 |
-
}
|
| 1188 |
-
}
|
| 1189 |
}
|
| 1190 |
-
|
| 1191 |
-
if (!success) {
|
| 1192 |
-
console.log('Could not find appointment ID input field');
|
| 1193 |
-
// Log all input elements for debugging
|
| 1194 |
-
var allInputs = document.querySelectorAll('input, textarea');
|
| 1195 |
-
console.log('All input elements found:', allInputs.length);
|
| 1196 |
-
for (var i = 0; i < allInputs.length; i++) {
|
| 1197 |
-
console.log('Input', i, ':', allInputs[i].placeholder, allInputs[i].id, allInputs[i].className);
|
| 1198 |
-
}
|
| 1199 |
-
}
|
| 1200 |
-
} else {
|
| 1201 |
-
console.log('No appointment ID found in URL');
|
| 1202 |
-
}
|
| 1203 |
-
return success;
|
| 1204 |
-
}
|
| 1205 |
-
|
| 1206 |
-
// Function to wait for Gradio to be ready
|
| 1207 |
-
function waitForGradio() {
|
| 1208 |
-
if (typeof gradio !== 'undefined' && gradio) {
|
| 1209 |
-
console.log('Gradio detected, waiting for load...');
|
| 1210 |
-
setTimeout(function() {
|
| 1211 |
-
populateAppointmentId();
|
| 1212 |
-
// Also try again after a longer delay
|
| 1213 |
-
setTimeout(populateAppointmentId, 2000);
|
| 1214 |
-
}, 1000);
|
| 1215 |
-
} else {
|
| 1216 |
-
console.log('Gradio not detected, trying direct population...');
|
| 1217 |
-
populateAppointmentId();
|
| 1218 |
-
// Try again after a delay
|
| 1219 |
-
setTimeout(populateAppointmentId, 1000);
|
| 1220 |
}
|
| 1221 |
}
|
| 1222 |
-
|
| 1223 |
-
// Run when page loads
|
| 1224 |
document.addEventListener('DOMContentLoaded', function() {
|
| 1225 |
-
|
| 1226 |
-
waitForGradio();
|
| 1227 |
-
});
|
| 1228 |
-
|
| 1229 |
-
// Also run when window loads
|
| 1230 |
-
window.addEventListener('load', function() {
|
| 1231 |
-
console.log('Window loaded, attempting to populate appointment ID...');
|
| 1232 |
-
setTimeout(waitForGradio, 500);
|
| 1233 |
-
});
|
| 1234 |
-
|
| 1235 |
-
// Monitor for dynamic content changes
|
| 1236 |
-
var observer = new MutationObserver(function(mutations) {
|
| 1237 |
-
mutations.forEach(function(mutation) {
|
| 1238 |
-
if (mutation.type === 'childList') {
|
| 1239 |
-
setTimeout(populateAppointmentId, 100);
|
| 1240 |
-
}
|
| 1241 |
-
});
|
| 1242 |
-
});
|
| 1243 |
-
|
| 1244 |
-
// Start observing
|
| 1245 |
-
observer.observe(document.body, {
|
| 1246 |
-
childList: true,
|
| 1247 |
-
subtree: true
|
| 1248 |
});
|
| 1249 |
</script>
|
| 1250 |
""")
|
| 1251 |
|
| 1252 |
-
# Run the interface
|
| 1253 |
interface.launch()
|
| 1254 |
|
| 1255 |
-
|
| 1256 |
if __name__ == "__main__":
|
| 1257 |
-
create_interface()
|
|
|
|
| 400 |
try:
|
| 401 |
from .config import get_flask_urls, get_doctors_page_urls, TIMEOUT_SETTINGS
|
| 402 |
except ImportError:
|
|
|
|
| 403 |
def get_flask_urls():
|
| 404 |
return [
|
| 405 |
"http://127.0.0.1:600/complete_appointment",
|
|
|
|
| 407 |
"https://your-flask-app-domain.com/complete_appointment",
|
| 408 |
"http://your-flask-app-ip:600/complete_appointment"
|
| 409 |
]
|
|
|
|
| 410 |
def get_doctors_page_urls():
|
| 411 |
return {
|
| 412 |
"local": "http://127.0.0.1:600/doctors",
|
| 413 |
"production": "https://your-flask-app-domain.com/doctors"
|
| 414 |
}
|
|
|
|
| 415 |
TIMEOUT_SETTINGS = {"connection_timeout": 5, "request_timeout": 10}
|
| 416 |
|
|
|
|
| 417 |
parent_dir = os.path.dirname(os.path.abspath(__file__))
|
| 418 |
sys.path.append(parent_dir)
|
| 419 |
|
|
|
|
| 420 |
logging.basicConfig(
|
| 421 |
level=logging.INFO,
|
| 422 |
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
|
|
|
|
| 425 |
logger = logging.getLogger(__name__)
|
| 426 |
|
| 427 |
class MediSyncApp:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 428 |
def __init__(self):
|
|
|
|
| 429 |
self.logger = logging.getLogger(__name__)
|
| 430 |
self.logger.info("Initializing MediSync application")
|
| 431 |
+
self._temp_files = []
|
| 432 |
self.fusion_model = None
|
| 433 |
self.image_model = None
|
| 434 |
self.text_model = None
|
| 435 |
|
| 436 |
def __del__(self):
|
|
|
|
| 437 |
self.cleanup_temp_files()
|
| 438 |
|
| 439 |
def cleanup_temp_files(self):
|
|
|
|
| 440 |
for temp_file in self._temp_files:
|
| 441 |
try:
|
| 442 |
if os.path.exists(temp_file):
|
|
|
|
| 447 |
self._temp_files = []
|
| 448 |
|
| 449 |
def load_models(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 450 |
if self.fusion_model is not None:
|
| 451 |
return True
|
|
|
|
| 452 |
try:
|
| 453 |
self.logger.info("Loading models...")
|
|
|
|
|
|
|
| 454 |
self.logger.info("Models loaded successfully (mock implementation)")
|
| 455 |
return True
|
| 456 |
except Exception as e:
|
|
|
|
| 458 |
return False
|
| 459 |
|
| 460 |
def enhance_image(self, image):
|
|
|
|
| 461 |
if image is None:
|
| 462 |
return None
|
|
|
|
| 463 |
try:
|
|
|
|
| 464 |
enhanced_image = image
|
| 465 |
self.logger.info("Image enhanced successfully")
|
| 466 |
return enhanced_image
|
|
|
|
| 469 |
return image
|
| 470 |
|
| 471 |
def analyze_image(self, image):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 472 |
if image is None:
|
| 473 |
+
return None, "<div class='ms-error'>Please upload an image first.</div>", None
|
|
|
|
| 474 |
if not self.load_models():
|
| 475 |
+
return image, "<div class='ms-error'>Error: Models not loaded properly.</div>", None
|
|
|
|
| 476 |
try:
|
| 477 |
self.logger.info("Analyzing image")
|
|
|
|
|
|
|
| 478 |
results = {
|
| 479 |
"primary_finding": "Normal chest X-ray",
|
| 480 |
"confidence": 0.85,
|
|
|
|
| 485 |
("Cardiomegaly", 0.05)
|
| 486 |
]
|
| 487 |
}
|
|
|
|
|
|
|
| 488 |
fig = self.plot_image_prediction(
|
| 489 |
image,
|
| 490 |
results.get("predictions", []),
|
| 491 |
f"Primary Finding: {results.get('primary_finding', 'Unknown')}"
|
| 492 |
)
|
|
|
|
|
|
|
| 493 |
plot_html = self.fig_to_html(fig)
|
| 494 |
+
plt.close(fig)
|
|
|
|
|
|
|
| 495 |
html_result = self.format_image_results(results)
|
|
|
|
| 496 |
return image, html_result, plot_html
|
|
|
|
| 497 |
except Exception as e:
|
| 498 |
self.logger.error(f"Error in image analysis: {e}")
|
| 499 |
+
return image, f"<div class='ms-error'>Error analyzing image: {str(e)}</div>", None
|
| 500 |
|
| 501 |
def analyze_text(self, text):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 502 |
if not text or text.strip() == "":
|
| 503 |
+
return "", "<div class='ms-error'>Please enter medical report text.</div>", None
|
|
|
|
| 504 |
if not self.load_models():
|
| 505 |
+
return text, "<div class='ms-error'>Error: Models not loaded properly.</div>", None
|
|
|
|
| 506 |
try:
|
| 507 |
self.logger.info("Analyzing text")
|
|
|
|
|
|
|
| 508 |
results = {
|
| 509 |
"entities": [
|
| 510 |
{"text": "chest X-ray", "type": "PROCEDURE", "confidence": 0.95},
|
|
|
|
| 514 |
"sentiment": "neutral",
|
| 515 |
"key_findings": ["Normal heart size", "Clear lungs", "8mm nodular opacity"]
|
| 516 |
}
|
|
|
|
|
|
|
| 517 |
html_result = self.format_text_results(results)
|
|
|
|
|
|
|
| 518 |
plot_html = self.create_entity_visualization(results["entities"])
|
|
|
|
| 519 |
return text, html_result, plot_html
|
|
|
|
| 520 |
except Exception as e:
|
| 521 |
self.logger.error(f"Error in text analysis: {e}")
|
| 522 |
+
return text, f"<div class='ms-error'>Error analyzing text: {str(e)}</div>", None
|
| 523 |
|
| 524 |
def analyze_multimodal(self, image, text):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 525 |
if image is None and (not text or text.strip() == ""):
|
| 526 |
+
return "<div class='ms-error'>Please provide either an image or text for analysis.</div>", None
|
|
|
|
| 527 |
if not self.load_models():
|
| 528 |
+
return "<div class='ms-error'>Error: Models not loaded properly.</div>", None
|
|
|
|
| 529 |
try:
|
| 530 |
self.logger.info("Performing multimodal analysis")
|
|
|
|
|
|
|
| 531 |
results = {
|
| 532 |
"combined_finding": "Normal chest X-ray with minor findings",
|
| 533 |
"confidence": 0.92,
|
|
|
|
| 538 |
"Monitor for any changes in symptoms"
|
| 539 |
]
|
| 540 |
}
|
|
|
|
|
|
|
| 541 |
html_result = self.format_multimodal_results(results)
|
|
|
|
|
|
|
| 542 |
plot_html = self.create_multimodal_visualization(results)
|
|
|
|
| 543 |
return html_result, plot_html
|
|
|
|
| 544 |
except Exception as e:
|
| 545 |
self.logger.error(f"Error in multimodal analysis: {e}")
|
| 546 |
+
return f"<div class='ms-error'>Error in multimodal analysis: {str(e)}</div>", None
|
| 547 |
|
| 548 |
def format_image_results(self, results):
|
|
|
|
| 549 |
html_result = f"""
|
| 550 |
+
<div class="ms-card ms-image-card">
|
| 551 |
+
<h2 class="ms-title ms-image-title">X-ray Analysis Results</h2>
|
| 552 |
+
<p><span class="ms-label">Primary Finding:</span> <span class="ms-value">{results.get("primary_finding", "Unknown")}</span></p>
|
| 553 |
+
<p><span class="ms-label">Confidence:</span> <span class="ms-value">{results.get("confidence", 0):.1%}</span></p>
|
| 554 |
+
<p><span class="ms-label">Abnormality Detected:</span> <span class="ms-value">{"Yes" if results.get("has_abnormality", False) else "No"}</span></p>
|
| 555 |
+
<h3 class="ms-subtitle">Top Predictions:</h3>
|
|
|
|
| 556 |
<ul>
|
| 557 |
"""
|
|
|
|
| 558 |
for label, prob in results.get("predictions", [])[:5]:
|
| 559 |
html_result += f"<li>{label}: {prob:.1%}</li>"
|
|
|
|
| 560 |
html_result += "</ul></div>"
|
| 561 |
return html_result
|
| 562 |
|
| 563 |
def format_text_results(self, results):
|
|
|
|
| 564 |
html_result = f"""
|
| 565 |
+
<div class="ms-card ms-text-card">
|
| 566 |
+
<h2 class="ms-title ms-text-title">Text Analysis Results</h2>
|
| 567 |
+
<p><span class="ms-label">Sentiment:</span> <span class="ms-value">{results.get("sentiment", "Unknown").title()}</span></p>
|
| 568 |
+
<h3 class="ms-subtitle">Key Findings:</h3>
|
|
|
|
| 569 |
<ul>
|
| 570 |
"""
|
|
|
|
| 571 |
for finding in results.get("key_findings", []):
|
| 572 |
html_result += f"<li>{finding}</li>"
|
|
|
|
| 573 |
html_result += "</ul>"
|
| 574 |
+
html_result += "<h3 class='ms-subtitle'>Extracted Entities:</h3><ul>"
|
|
|
|
| 575 |
for entity in results.get("entities", [])[:5]:
|
| 576 |
html_result += f"<li><strong>{entity['text']}</strong> ({entity['type']}) - {entity['confidence']:.1%}</li>"
|
|
|
|
| 577 |
html_result += "</ul></div>"
|
| 578 |
return html_result
|
| 579 |
|
| 580 |
def format_multimodal_results(self, results):
|
|
|
|
| 581 |
html_result = f"""
|
| 582 |
+
<div class="ms-card ms-multimodal-card">
|
| 583 |
+
<h2 class="ms-title ms-multimodal-title">Multimodal Analysis Results</h2>
|
| 584 |
+
<p><span class="ms-label">Combined Finding:</span> <span class="ms-value">{results.get("combined_finding", "Unknown")}</span></p>
|
| 585 |
+
<p><span class="ms-label">Overall Confidence:</span> <span class="ms-value">{results.get("confidence", 0):.1%}</span></p>
|
| 586 |
+
<h3 class="ms-subtitle">Image Contribution:</h3>
|
|
|
|
| 587 |
<p>{results.get("image_contribution", "No image analysis available")}</p>
|
| 588 |
+
<h3 class="ms-subtitle">Text Contribution:</h3>
|
|
|
|
| 589 |
<p>{results.get("text_contribution", "No text analysis available")}</p>
|
| 590 |
+
<h3 class="ms-subtitle">Recommendations:</h3>
|
|
|
|
| 591 |
<ul>
|
| 592 |
"""
|
|
|
|
| 593 |
for rec in results.get("recommendations", []):
|
| 594 |
html_result += f"<li>{rec}</li>"
|
|
|
|
| 595 |
html_result += "</ul></div>"
|
| 596 |
return html_result
|
| 597 |
|
| 598 |
def plot_image_prediction(self, image, predictions, title):
|
|
|
|
| 599 |
fig, ax = plt.subplots(figsize=(10, 6))
|
| 600 |
ax.imshow(image)
|
| 601 |
ax.set_title(title, fontsize=14, fontweight='bold')
|
|
|
|
| 603 |
return fig
|
| 604 |
|
| 605 |
def create_entity_visualization(self, entities):
|
|
|
|
| 606 |
if not entities:
|
| 607 |
return "<p>No entities found in text.</p>"
|
|
|
|
| 608 |
fig, ax = plt.subplots(figsize=(10, 6))
|
|
|
|
| 609 |
entity_types = {}
|
| 610 |
for entity in entities:
|
| 611 |
entity_type = entity['type']
|
| 612 |
if entity_type not in entity_types:
|
| 613 |
entity_types[entity_type] = 0
|
| 614 |
entity_types[entity_type] += 1
|
|
|
|
| 615 |
if entity_types:
|
| 616 |
+
ax.bar(entity_types.keys(), entity_types.values(), color='#4e79a7')
|
| 617 |
ax.set_title('Entity Types Found in Text', fontsize=14, fontweight='bold')
|
| 618 |
ax.set_ylabel('Count')
|
| 619 |
plt.xticks(rotation=45)
|
|
|
|
| 620 |
return self.fig_to_html(fig)
|
| 621 |
|
| 622 |
def create_multimodal_visualization(self, results):
|
|
|
|
| 623 |
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6))
|
|
|
|
|
|
|
| 624 |
confidence = results.get("confidence", 0)
|
| 625 |
+
ax1.pie([confidence, 1-confidence], labels=['Confidence', 'Uncertainty'],
|
| 626 |
+
colors=['#59c47e', '#e15759'], autopct='%1.1f%%')
|
| 627 |
ax1.set_title('Analysis Confidence', fontweight='bold')
|
|
|
|
|
|
|
| 628 |
recommendations = results.get("recommendations", [])
|
| 629 |
+
ax2.bar(['Recommendations'], [len(recommendations)], color='#4e79a7')
|
| 630 |
ax2.set_title('Number of Recommendations', fontweight='bold')
|
| 631 |
ax2.set_ylabel('Count')
|
|
|
|
| 632 |
plt.tight_layout()
|
| 633 |
return self.fig_to_html(fig)
|
| 634 |
|
| 635 |
def fig_to_html(self, fig):
|
|
|
|
| 636 |
import io
|
| 637 |
import base64
|
|
|
|
| 638 |
buf = io.BytesIO()
|
| 639 |
fig.savefig(buf, format='png', bbox_inches='tight', dpi=100)
|
| 640 |
buf.seek(0)
|
| 641 |
img_str = base64.b64encode(buf.read()).decode()
|
| 642 |
buf.close()
|
| 643 |
+
return f'<img src="data:image/png;base64,{img_str}" style="max-width: 100%; height: auto; border-radius: 8px; box-shadow: 0 2px 8px #0001;"/>'
|
|
|
|
| 644 |
|
| 645 |
def complete_appointment(appointment_id):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 646 |
try:
|
|
|
|
| 647 |
flask_urls = get_flask_urls()
|
|
|
|
| 648 |
payload = {"appointment_id": appointment_id}
|
|
|
|
| 649 |
for flask_api_url in flask_urls:
|
| 650 |
try:
|
| 651 |
logger.info(f"Trying to connect to: {flask_api_url}")
|
| 652 |
response = requests.post(flask_api_url, json=payload, timeout=TIMEOUT_SETTINGS["connection_timeout"])
|
|
|
|
| 653 |
if response.status_code == 200:
|
| 654 |
return {"status": "success", "message": "Appointment completed successfully"}
|
| 655 |
elif response.status_code == 404:
|
|
|
|
| 657 |
else:
|
| 658 |
logger.warning(f"Unexpected response from {flask_api_url}: {response.status_code}")
|
| 659 |
continue
|
|
|
|
| 660 |
except requests.exceptions.ConnectionError:
|
| 661 |
logger.warning(f"Connection failed to {flask_api_url}")
|
| 662 |
continue
|
|
|
|
| 666 |
except Exception as e:
|
| 667 |
logger.warning(f"Error with {flask_api_url}: {e}")
|
| 668 |
continue
|
|
|
|
|
|
|
| 669 |
return {
|
| 670 |
+
"status": "error",
|
| 671 |
"message": "Cannot connect to Flask app. Please ensure the Flask app is running and accessible."
|
| 672 |
}
|
|
|
|
| 673 |
except Exception as e:
|
| 674 |
logger.error(f"Error completing appointment: {e}")
|
| 675 |
return {"status": "error", "message": f"Error: {str(e)}"}
|
| 676 |
|
| 677 |
def create_interface():
|
|
|
|
|
|
|
| 678 |
app = MediSyncApp()
|
|
|
|
|
|
|
| 679 |
example_report = """
|
| 680 |
CHEST X-RAY EXAMINATION
|
| 681 |
+
|
| 682 |
CLINICAL HISTORY: 55-year-old male with cough and fever.
|
| 683 |
+
|
| 684 |
FINDINGS: The heart size is at the upper limits of normal. The lungs are clear without focal consolidation,
|
| 685 |
effusion, or pneumothorax. There is mild prominence of the pulmonary vasculature. No pleural effusion is seen.
|
| 686 |
There is a small nodular opacity noted in the right lower lobe measuring approximately 8mm, which is suspicious
|
| 687 |
and warrants further investigation. The mediastinum is unremarkable. The visualized bony structures show no acute abnormalities.
|
| 688 |
+
|
| 689 |
IMPRESSION:
|
| 690 |
1. Mild cardiomegaly.
|
| 691 |
2. 8mm nodular opacity in the right lower lobe, recommend follow-up CT for further evaluation.
|
| 692 |
3. No acute pulmonary parenchymal abnormality.
|
| 693 |
+
|
| 694 |
RECOMMENDATIONS: Follow-up chest CT to further characterize the nodular opacity in the right lower lobe.
|
| 695 |
"""
|
|
|
|
|
|
|
| 696 |
sample_images_dir = Path(parent_dir) / "data" / "sample"
|
| 697 |
+
sample_images = list(sample_images_dir.glob("*.png")) + list(sample_images_dir.glob("*.jpg"))
|
|
|
|
|
|
|
|
|
|
| 698 |
sample_image_path = None
|
| 699 |
if sample_images:
|
| 700 |
sample_image_path = str(sample_images[0])
|
| 701 |
|
|
|
|
| 702 |
with gr.Blocks(
|
| 703 |
+
title="MediSync: Multi-Modal Medical Analysis System",
|
| 704 |
+
theme=gr.themes.Soft(primary_hue="blue", secondary_hue="green", neutral_hue="slate"),
|
| 705 |
+
css="""
|
| 706 |
+
.ms-card {
|
| 707 |
+
background: #fff !important;
|
| 708 |
+
color: #222 !important;
|
| 709 |
+
border-radius: 12px;
|
| 710 |
+
box-shadow: 0 2px 12px #0002;
|
| 711 |
+
padding: 24px 24px 16px 24px;
|
| 712 |
+
margin: 16px 0;
|
| 713 |
+
}
|
| 714 |
+
.ms-title {
|
| 715 |
+
font-size: 1.5em;
|
| 716 |
+
font-weight: 700;
|
| 717 |
+
margin-bottom: 0.5em;
|
| 718 |
+
color: #1a237e !important;
|
| 719 |
+
}
|
| 720 |
+
.ms-image-title { color: #007bff !important; }
|
| 721 |
+
.ms-text-title { color: #28a745 !important; }
|
| 722 |
+
.ms-multimodal-title { color: #6f42c1 !important; }
|
| 723 |
+
.ms-label {
|
| 724 |
+
font-weight: 600;
|
| 725 |
+
color: #374151 !important;
|
| 726 |
+
}
|
| 727 |
+
.ms-value {
|
| 728 |
+
color: #111 !important;
|
| 729 |
+
}
|
| 730 |
+
.ms-subtitle {
|
| 731 |
+
font-size: 1.1em;
|
| 732 |
+
font-weight: 600;
|
| 733 |
+
margin-top: 1em;
|
| 734 |
+
color: #0d6efd !important;
|
| 735 |
+
}
|
| 736 |
+
.ms-error {
|
| 737 |
+
color: #b91c1c !important;
|
| 738 |
+
background: #ffe6e6 !important;
|
| 739 |
+
border-radius: 6px;
|
| 740 |
+
padding: 10px 16px;
|
| 741 |
+
font-weight: 600;
|
| 742 |
+
}
|
| 743 |
+
.end-consultation-btn {
|
| 744 |
+
background-color: #dc3545 !important;
|
| 745 |
+
border-color: #dc3545 !important;
|
| 746 |
+
color: #fff !important;
|
| 747 |
+
font-weight: bold !important;
|
| 748 |
+
border-radius: 8px !important;
|
| 749 |
+
font-size: 1.1em !important;
|
| 750 |
+
padding: 12px 32px !important;
|
| 751 |
+
margin-top: 8px !important;
|
| 752 |
+
}
|
| 753 |
+
.end-consultation-btn:hover {
|
| 754 |
+
background-color: #c82333 !important;
|
| 755 |
+
border-color: #bd2130 !important;
|
| 756 |
+
}
|
| 757 |
+
.gradio-container, .gr-block, .gr-panel, .gr-box {
|
| 758 |
+
background: #f4f7fa !important;
|
| 759 |
+
}
|
| 760 |
+
.gr-input, .gr-textbox, .gr-text-input, .gr-textarea {
|
| 761 |
+
background: #fff !important;
|
| 762 |
+
color: #222 !important;
|
| 763 |
+
}
|
| 764 |
+
.gr-label, label {
|
| 765 |
+
color: #1a237e !important;
|
| 766 |
+
font-weight: 600 !important;
|
| 767 |
+
}
|
| 768 |
+
.gr-html, .gr-markdown {
|
| 769 |
+
color: #222 !important;
|
| 770 |
+
}
|
| 771 |
+
.gr-button {
|
| 772 |
+
font-weight: 600 !important;
|
| 773 |
+
}
|
| 774 |
+
"""
|
| 775 |
) as interface:
|
| 776 |
+
with gr.Row():
|
| 777 |
+
gr.Markdown(
|
| 778 |
+
"""
|
| 779 |
+
<div style="display: flex; align-items: center; gap: 16px;">
|
| 780 |
+
<img src="https://img.icons8.com/fluency/48/000000/medical-doctor.png" style="height:48px;"/>
|
| 781 |
+
<span style="font-size:2.1em; font-weight:800; color:#1a237e;">MediSync: Multi-Modal Medical Analysis System</span>
|
| 782 |
+
</div>
|
| 783 |
+
<div style="margin-top: 8px; color: #374151; font-size: 1.1em;">
|
| 784 |
+
<b>AI-powered healthcare solution</b> for seamless X-ray image and report analysis.<br>
|
| 785 |
+
<ul style="margin: 0 0 0 1.2em;">
|
| 786 |
+
<li>Upload a chest X-ray image</li>
|
| 787 |
+
<li>Enter the corresponding medical report text</li>
|
| 788 |
+
<li>Choose the analysis type: <b>Image</b>, <b>Text</b>, or <b>Multimodal</b></li>
|
| 789 |
+
<li>Click <b>End Consultation</b> to complete your appointment</li>
|
| 790 |
+
</ul>
|
| 791 |
+
</div>
|
| 792 |
+
""",
|
| 793 |
+
elem_id="ms-header"
|
| 794 |
+
)
|
| 795 |
|
|
|
|
| 796 |
with gr.Row():
|
|
|
|
| 797 |
import urllib.parse
|
| 798 |
try:
|
|
|
|
| 799 |
url_params = {}
|
| 800 |
if hasattr(gr, 'get_current_url'):
|
| 801 |
current_url = gr.get_current_url()
|
| 802 |
if current_url:
|
| 803 |
parsed = urllib.parse.urlparse(current_url)
|
| 804 |
url_params = urllib.parse.parse_qs(parsed.query)
|
|
|
|
| 805 |
default_appointment_id = url_params.get('appointment_id', [''])[0]
|
| 806 |
except:
|
| 807 |
default_appointment_id = ""
|
|
|
|
| 808 |
appointment_id_input = gr.Textbox(
|
| 809 |
label="Appointment ID",
|
| 810 |
placeholder="Enter your appointment ID here...",
|
| 811 |
info="This will be automatically populated if you came from the doctors page",
|
| 812 |
+
value=default_appointment_id,
|
| 813 |
+
elem_id="appointment_id_input"
|
| 814 |
)
|
| 815 |
|
| 816 |
+
with gr.Tabs():
|
| 817 |
+
with gr.TabItem("Multimodal Analysis", id="tab-multimodal"):
|
| 818 |
+
with gr.Row():
|
| 819 |
+
with gr.Column(scale=1):
|
| 820 |
+
multi_img_input = gr.Image(label="Upload X-ray Image", type="pil", elem_id="multi_img_input")
|
| 821 |
+
multi_img_enhance = gr.Button("Enhance Image", icon="✨", elem_id="multi_img_enhance")
|
| 822 |
+
multi_text_input = gr.Textbox(
|
| 823 |
+
label="Enter Medical Report Text",
|
| 824 |
+
placeholder="Enter the radiologist's report text here...",
|
| 825 |
+
lines=10,
|
| 826 |
+
value=example_report if sample_image_path is None else None,
|
| 827 |
+
elem_id="multi_text_input"
|
| 828 |
+
)
|
| 829 |
+
multi_analyze_btn = gr.Button("Analyze Image & Text", variant="primary", icon="🔎", elem_id="multi_analyze_btn")
|
| 830 |
+
with gr.Column(scale=1):
|
| 831 |
+
multi_results = gr.HTML(label="Analysis Results", elem_id="multi_results")
|
| 832 |
+
multi_plot = gr.HTML(label="Visualization", elem_id="multi_plot")
|
| 833 |
+
if sample_image_path:
|
| 834 |
+
gr.Examples(
|
| 835 |
+
examples=[[sample_image_path, example_report]],
|
| 836 |
+
inputs=[multi_img_input, multi_text_input],
|
| 837 |
+
label="Example X-ray and Report",
|
| 838 |
)
|
| 839 |
|
| 840 |
+
with gr.TabItem("Image Analysis", id="tab-image"):
|
| 841 |
+
with gr.Row():
|
| 842 |
+
with gr.Column(scale=1):
|
| 843 |
+
img_input = gr.Image(label="Upload X-ray Image", type="pil", elem_id="img_input")
|
| 844 |
+
img_enhance = gr.Button("Enhance Image", icon="✨", elem_id="img_enhance")
|
| 845 |
+
img_analyze_btn = gr.Button("Analyze Image", variant="primary", icon="🔎", elem_id="img_analyze_btn")
|
| 846 |
+
with gr.Column(scale=1):
|
| 847 |
+
img_output = gr.Image(label="Processed Image", elem_id="img_output")
|
| 848 |
+
img_results = gr.HTML(label="Analysis Results", elem_id="img_results")
|
| 849 |
+
img_plot = gr.HTML(label="Visualization", elem_id="img_plot")
|
| 850 |
+
if sample_image_path:
|
| 851 |
+
gr.Examples(
|
| 852 |
+
examples=[[sample_image_path]],
|
| 853 |
+
inputs=[img_input],
|
| 854 |
+
label="Example X-ray Image",
|
| 855 |
)
|
| 856 |
|
| 857 |
+
with gr.TabItem("Text Analysis", id="tab-text"):
|
| 858 |
+
with gr.Row():
|
| 859 |
+
with gr.Column(scale=1):
|
| 860 |
+
text_input = gr.Textbox(
|
| 861 |
+
label="Enter Medical Report Text",
|
| 862 |
+
placeholder="Enter the radiologist's report text here...",
|
| 863 |
+
lines=10,
|
| 864 |
+
value=example_report,
|
| 865 |
+
elem_id="text_input"
|
| 866 |
+
)
|
| 867 |
+
text_analyze_btn = gr.Button("Analyze Text", variant="primary", icon="🔎", elem_id="text_analyze_btn")
|
| 868 |
+
with gr.Column(scale=1):
|
| 869 |
+
text_output = gr.Textbox(label="Processed Text", elem_id="text_output")
|
| 870 |
+
text_results = gr.HTML(label="Analysis Results", elem_id="text_results")
|
| 871 |
+
text_plot = gr.HTML(label="Entity Visualization", elem_id="text_plot")
|
| 872 |
gr.Examples(
|
| 873 |
+
examples=[[example_report]],
|
| 874 |
+
inputs=[text_input],
|
| 875 |
+
label="Example Medical Report",
|
| 876 |
)
|
| 877 |
|
| 878 |
+
with gr.TabItem("About", id="tab-about"):
|
| 879 |
+
gr.Markdown(
|
| 880 |
+
"""
|
| 881 |
+
<div style="font-size:1.1em; color:#374151;">
|
| 882 |
+
<b>MediSync</b> is an AI-powered healthcare solution that uses multi-modal analysis to provide comprehensive insights from medical images and reports.<br><br>
|
| 883 |
+
<b>Key Features</b>
|
| 884 |
+
<ul>
|
| 885 |
+
<li><b>X-ray Image Analysis:</b> Detects abnormalities in chest X-rays using pre-trained vision models</li>
|
| 886 |
+
<li><b>Medical Report Processing:</b> Extracts key information from patient reports using NLP models</li>
|
| 887 |
+
<li><b>Multi-modal Integration:</b> Combines insights from both image and text data for more accurate analysis</li>
|
| 888 |
+
</ul>
|
| 889 |
+
<b>Models Used</b>
|
| 890 |
+
<ul>
|
| 891 |
+
<li><b>X-ray Analysis:</b> facebook/deit-base-patch16-224-medical-cxr</li>
|
| 892 |
+
<li><b>Medical Text Analysis:</b> medicalai/ClinicalBERT</li>
|
| 893 |
+
</ul>
|
| 894 |
+
<b>Important Disclaimer</b><br>
|
| 895 |
+
<span style="color:#b91c1c;">
|
| 896 |
+
This tool is for educational and research purposes only. It is not intended to provide medical advice or replace professional healthcare. Always consult with qualified healthcare providers for medical decisions.
|
| 897 |
+
</span>
|
| 898 |
+
</div>
|
| 899 |
+
"""
|
| 900 |
)
|
| 901 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 902 |
with gr.Row():
|
| 903 |
with gr.Column():
|
| 904 |
end_consultation_btn = gr.Button(
|
| 905 |
+
"End Consultation",
|
| 906 |
+
variant="stop",
|
| 907 |
size="lg",
|
| 908 |
+
elem_classes=["end-consultation-btn"],
|
| 909 |
+
elem_id="end_consultation_btn"
|
| 910 |
)
|
| 911 |
+
end_consultation_status = gr.HTML(label="Status", elem_id="end_consultation_status")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 912 |
|
| 913 |
+
# Event handlers
|
| 914 |
multi_img_enhance.click(
|
| 915 |
app.enhance_image, inputs=multi_img_input, outputs=multi_img_input
|
| 916 |
)
|
|
|
|
| 919 |
inputs=[multi_img_input, multi_text_input],
|
| 920 |
outputs=[multi_results, multi_plot],
|
| 921 |
)
|
|
|
|
| 922 |
img_enhance.click(app.enhance_image, inputs=img_input, outputs=img_output)
|
| 923 |
img_analyze_btn.click(
|
| 924 |
app.analyze_image,
|
| 925 |
inputs=img_input,
|
| 926 |
outputs=[img_output, img_results, img_plot],
|
| 927 |
)
|
|
|
|
| 928 |
text_analyze_btn.click(
|
| 929 |
app.analyze_text,
|
| 930 |
inputs=text_input,
|
| 931 |
outputs=[text_output, text_results, text_plot],
|
| 932 |
)
|
| 933 |
|
|
|
|
| 934 |
def handle_end_consultation(appointment_id):
|
| 935 |
if not appointment_id or appointment_id.strip() == "":
|
| 936 |
+
return "<div class='ms-error'>Please enter your appointment ID first.</div>"
|
|
|
|
|
|
|
| 937 |
result = complete_appointment(appointment_id.strip())
|
|
|
|
| 938 |
if result["status"] == "success":
|
|
|
|
| 939 |
doctors_urls = get_doctors_page_urls()
|
|
|
|
|
|
|
| 940 |
html_response = f"""
|
| 941 |
+
<div style='color: #198754; padding: 15px; background-color: #e6ffe6; border-radius: 8px; margin: 10px 0;'>
|
| 942 |
<h3>✅ Consultation Completed Successfully!</h3>
|
| 943 |
<p>{result['message']}</p>
|
| 944 |
<p>Your appointment has been marked as completed.</p>
|
|
|
|
| 953 |
</div>
|
| 954 |
"""
|
| 955 |
else:
|
|
|
|
| 956 |
if "Cannot connect to Flask app" in result['message']:
|
|
|
|
| 957 |
html_response = f"""
|
| 958 |
+
<div style='color: #b26a00; padding: 15px; background-color: #fff3cd; border-radius: 8px; margin: 10px 0;'>
|
| 959 |
<h3>⚠️ Consultation Ready to Complete</h3>
|
| 960 |
<p>Your consultation analysis is complete! However, we cannot automatically mark your appointment as completed because the Flask app is not accessible from this environment.</p>
|
| 961 |
<p><strong>Appointment ID:</strong> {appointment_id.strip()}</p>
|
|
|
|
| 983 |
"""
|
| 984 |
else:
|
| 985 |
html_response = f"""
|
| 986 |
+
<div class='ms-error' style='padding: 15px; background-color: #ffe6e6; border-radius: 8px; margin: 10px 0;'>
|
| 987 |
<h3>❌ Error Completing Consultation</h3>
|
| 988 |
<p>{result['message']}</p>
|
| 989 |
<p>Please try again or contact support if the problem persists.</p>
|
| 990 |
</div>
|
| 991 |
"""
|
|
|
|
| 992 |
return html_response
|
| 993 |
|
| 994 |
end_consultation_btn.click(
|
|
|
|
| 997 |
outputs=[end_consultation_status]
|
| 998 |
)
|
| 999 |
|
|
|
|
| 1000 |
gr.HTML("""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1001 |
<script>
|
|
|
|
| 1002 |
function getUrlParameter(name) {
|
| 1003 |
name = name.replace(/[[]/, '\\[').replace(/[\]]/, '\\]');
|
| 1004 |
var regex = new RegExp('[\\?&]' + name + '=([^&#]*)');
|
| 1005 |
var results = regex.exec(location.search);
|
| 1006 |
+
return results === null ? '' : decodeURIComponent(results[1].replace(/\\+/g, ' '));
|
| 1007 |
}
|
|
|
|
|
|
|
| 1008 |
function populateAppointmentId() {
|
| 1009 |
var appointmentId = getUrlParameter('appointment_id');
|
|
|
|
|
|
|
| 1010 |
if (appointmentId) {
|
| 1011 |
+
var input = document.getElementById('appointment_id_input');
|
| 1012 |
+
if (input) {
|
| 1013 |
+
input.value = appointmentId;
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1014 |
var event = new Event('input', { bubbles: true });
|
| 1015 |
+
input.dispatchEvent(event);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1016 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1017 |
}
|
| 1018 |
}
|
|
|
|
|
|
|
| 1019 |
document.addEventListener('DOMContentLoaded', function() {
|
| 1020 |
+
setTimeout(populateAppointmentId, 500);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1021 |
});
|
| 1022 |
</script>
|
| 1023 |
""")
|
| 1024 |
|
|
|
|
| 1025 |
interface.launch()
|
| 1026 |
|
|
|
|
| 1027 |
if __name__ == "__main__":
|
| 1028 |
+
create_interface()
|