updated code UI ✅✅
Browse files- mediSync/app.py +263 -346
mediSync/app.py
CHANGED
|
@@ -8,7 +8,51 @@ import gradio as gr
|
|
| 8 |
import matplotlib.pyplot as plt
|
| 9 |
from PIL import Image
|
| 10 |
|
| 11 |
-
# Import configuration for end consultation logic
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
try:
|
| 13 |
from .config import get_flask_urls, get_doctors_page_urls, TIMEOUT_SETTINGS
|
| 14 |
except ImportError:
|
|
@@ -26,20 +70,9 @@ except ImportError:
|
|
| 26 |
}
|
| 27 |
TIMEOUT_SETTINGS = {"connection_timeout": 5, "request_timeout": 10}
|
| 28 |
|
| 29 |
-
# Add parent directory to path
|
| 30 |
parent_dir = os.path.dirname(os.path.abspath(__file__))
|
| 31 |
sys.path.append(parent_dir)
|
| 32 |
|
| 33 |
-
# Import our modules for model and utility logic
|
| 34 |
-
from models.multimodal_fusion import MultimodalFusion
|
| 35 |
-
from utils.preprocessing import enhance_xray_image, normalize_report_text
|
| 36 |
-
from utils.visualization import (
|
| 37 |
-
plot_image_prediction,
|
| 38 |
-
plot_multimodal_results,
|
| 39 |
-
plot_report_entities,
|
| 40 |
-
)
|
| 41 |
-
|
| 42 |
-
# Set up logging
|
| 43 |
logging.basicConfig(
|
| 44 |
level=logging.INFO,
|
| 45 |
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
|
|
@@ -47,277 +80,224 @@ logging.basicConfig(
|
|
| 47 |
)
|
| 48 |
logger = logging.getLogger(__name__)
|
| 49 |
|
| 50 |
-
# Ensure sample data directory exists
|
| 51 |
-
os.makedirs(os.path.join(parent_dir, "data", "sample"), exist_ok=True)
|
| 52 |
-
|
| 53 |
class MediSyncApp:
|
| 54 |
-
"""
|
| 55 |
-
Main application class for the MediSync multi-modal medical analysis system.
|
| 56 |
-
"""
|
| 57 |
-
|
| 58 |
def __init__(self):
|
| 59 |
-
"""Initialize the application and load models."""
|
| 60 |
self.logger = logging.getLogger(__name__)
|
| 61 |
self.logger.info("Initializing MediSync application")
|
|
|
|
| 62 |
self.fusion_model = None
|
| 63 |
self.image_model = None
|
| 64 |
self.text_model = None
|
| 65 |
|
| 66 |
-
def
|
| 67 |
-
|
| 68 |
-
Load models if not already loaded.
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
try:
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
self.fusion_model = MultimodalFusion()
|
| 77 |
-
self.image_model = self.fusion_model.image_analyzer
|
| 78 |
-
self.text_model = self.fusion_model.text_analyzer
|
| 79 |
-
self.logger.info("Models loaded successfully")
|
| 80 |
return True
|
| 81 |
except Exception as e:
|
| 82 |
self.logger.error(f"Error loading models: {e}")
|
| 83 |
return False
|
| 84 |
|
| 85 |
-
def
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
Args:
|
| 90 |
-
image: Image file uploaded through Gradio
|
| 91 |
-
|
| 92 |
-
Returns:
|
| 93 |
-
tuple: (image, image_results_html, plot_as_html)
|
| 94 |
-
"""
|
| 95 |
try:
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
temp_path = os.path.join(temp_dir, "upload.png")
|
| 103 |
-
if isinstance(image, str):
|
| 104 |
-
from shutil import copyfile
|
| 105 |
-
copyfile(image, temp_path)
|
| 106 |
-
else:
|
| 107 |
-
image.save(temp_path)
|
| 108 |
-
|
| 109 |
-
self.logger.info(f"Analyzing image: {temp_path}")
|
| 110 |
-
results = self.image_model.analyze(temp_path)
|
| 111 |
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
image,
|
| 114 |
results.get("predictions", []),
|
| 115 |
-
f"Primary Finding: {results.get('primary_finding', 'Unknown')}"
|
| 116 |
)
|
| 117 |
plot_html = self.fig_to_html(fig)
|
| 118 |
-
|
| 119 |
-
html_result =
|
| 120 |
-
<div class="medisync-card medisync-card-bg medisync-force-text">
|
| 121 |
-
<h2 class="medisync-title medisync-blue">
|
| 122 |
-
<b>X-ray Analysis Results</b>
|
| 123 |
-
</h2>
|
| 124 |
-
<p><strong>Primary Finding:</strong> {results.get("primary_finding", "Unknown")}</p>
|
| 125 |
-
<p><strong>Confidence:</strong> {results.get("confidence", 0):.1%}</p>
|
| 126 |
-
<p><strong>Abnormality Detected:</strong> {"Yes" if results.get("has_abnormality", False) else "No"}</p>
|
| 127 |
-
<h3>Top Predictions:</h3>
|
| 128 |
-
<ul>
|
| 129 |
-
"""
|
| 130 |
-
for label, prob in results.get("predictions", [])[:5]:
|
| 131 |
-
html_result += f"<li>{label}: {prob:.1%}</li>"
|
| 132 |
-
html_result += "</ul>"
|
| 133 |
-
explanation = self.image_model.get_explanation(results)
|
| 134 |
-
html_result += f"<h3>Analysis Explanation:</h3><p>{explanation}</p>"
|
| 135 |
-
html_result += "</div>"
|
| 136 |
return image, html_result, plot_html
|
| 137 |
except Exception as e:
|
| 138 |
self.logger.error(f"Error in image analysis: {e}")
|
| 139 |
return image, f"Error analyzing image: {str(e)}", None
|
| 140 |
|
| 141 |
def analyze_text(self, text):
|
| 142 |
-
""
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
text: Report text input through Gradio
|
| 147 |
-
|
| 148 |
-
Returns:
|
| 149 |
-
tuple: (text, text_results_html, entities_plot_html)
|
| 150 |
-
"""
|
| 151 |
try:
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
self.
|
| 164 |
-
|
| 165 |
-
entities = results.get("entities", {})
|
| 166 |
-
fig = plot_report_entities(normalized_text, entities)
|
| 167 |
-
entities_plot_html = self.fig_to_html(fig)
|
| 168 |
-
html_result = f"""
|
| 169 |
-
<div class="medisync-card medisync-card-bg medisync-force-text">
|
| 170 |
-
<h2 class="medisync-title medisync-green">
|
| 171 |
-
<b>Text Analysis Results</b>
|
| 172 |
-
</h2>
|
| 173 |
-
<p><strong>Severity Level:</strong> {results.get("severity", {}).get("level", "Unknown")}</p>
|
| 174 |
-
<p><strong>Severity Score:</strong> {results.get("severity", {}).get("score", 0)}/4</p>
|
| 175 |
-
<p><strong>Confidence:</strong> {results.get("severity", {}).get("confidence", 0):.1%}</p>
|
| 176 |
-
<h3>Key Findings:</h3>
|
| 177 |
-
<ul>
|
| 178 |
-
"""
|
| 179 |
-
findings = results.get("findings", [])
|
| 180 |
-
if findings:
|
| 181 |
-
for finding in findings:
|
| 182 |
-
html_result += f"<li>{finding}</li>"
|
| 183 |
-
else:
|
| 184 |
-
html_result += "<li>No specific findings detailed.</li>"
|
| 185 |
-
html_result += "</ul>"
|
| 186 |
-
html_result += "<h3>Extracted Medical Entities:</h3>"
|
| 187 |
-
for category, items in entities.items():
|
| 188 |
-
if items:
|
| 189 |
-
html_result += f"<p><strong>{category.capitalize()}:</strong> {', '.join(items)}</p>"
|
| 190 |
-
html_result += "<h3>Follow-up Recommendations:</h3><ul>"
|
| 191 |
-
followups = results.get("followup_recommendations", [])
|
| 192 |
-
if followups:
|
| 193 |
-
for rec in followups:
|
| 194 |
-
html_result += f"<li>{rec}</li>"
|
| 195 |
-
else:
|
| 196 |
-
html_result += "<li>No specific follow-up recommendations.</li>"
|
| 197 |
-
html_result += "</ul></div>"
|
| 198 |
-
return text, html_result, entities_plot_html
|
| 199 |
except Exception as e:
|
| 200 |
self.logger.error(f"Error in text analysis: {e}")
|
| 201 |
return text, f"Error analyzing text: {str(e)}", None
|
| 202 |
|
| 203 |
def analyze_multimodal(self, image, text):
|
| 204 |
-
""
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
image: Image file uploaded through Gradio
|
| 209 |
-
text: Report text input through Gradio
|
| 210 |
-
|
| 211 |
-
Returns:
|
| 212 |
-
tuple: (results_html, multimodal_plot_html)
|
| 213 |
-
"""
|
| 214 |
try:
|
| 215 |
-
if not self.load_models() or self.fusion_model is None:
|
| 216 |
-
return "Error: Models not loaded properly.", None
|
| 217 |
-
if image is None:
|
| 218 |
-
return "Error: Please upload an X-ray image for analysis.", None
|
| 219 |
-
if not text or len(text.strip()) < 10:
|
| 220 |
-
return (
|
| 221 |
-
"Error: Please enter a valid medical report text (at least 10 characters).",
|
| 222 |
-
None,
|
| 223 |
-
)
|
| 224 |
-
temp_dir = tempfile.mkdtemp()
|
| 225 |
-
temp_path = os.path.join(temp_dir, "upload.png")
|
| 226 |
-
if isinstance(image, str):
|
| 227 |
-
from shutil import copyfile
|
| 228 |
-
copyfile(image, temp_path)
|
| 229 |
-
else:
|
| 230 |
-
image.save(temp_path)
|
| 231 |
-
normalized_text = normalize_report_text(text)
|
| 232 |
self.logger.info("Performing multimodal analysis")
|
| 233 |
-
results =
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
<p><strong>Severity Score:</strong> {results.get("severity", {}).get("score", 0)}/4</p>
|
| 246 |
-
<p><strong>Agreement Score:</strong> {results.get("agreement_score", 0):.0%}</p>
|
| 247 |
-
<h3>Detailed Findings</h3>
|
| 248 |
-
<ul>
|
| 249 |
-
"""
|
| 250 |
-
findings = results.get("findings", [])
|
| 251 |
-
if findings:
|
| 252 |
-
for finding in findings:
|
| 253 |
-
html_result += f"<li>{finding}</li>"
|
| 254 |
-
else:
|
| 255 |
-
html_result += "<li>No specific findings detailed.</li>"
|
| 256 |
-
html_result += "</ul>"
|
| 257 |
-
html_result += "<h3>Recommended Follow-up</h3><ul>"
|
| 258 |
-
followups = results.get("followup_recommendations", [])
|
| 259 |
-
if followups:
|
| 260 |
-
for rec in followups:
|
| 261 |
-
html_result += f"<li>{rec}</li>"
|
| 262 |
-
else:
|
| 263 |
-
html_result += "<li>No specific follow-up recommendations provided.</li>"
|
| 264 |
-
html_result += "</ul>"
|
| 265 |
-
confidence = results.get("severity", {}).get("confidence", 0)
|
| 266 |
-
html_result += f"""
|
| 267 |
-
<p><em>Note: This analysis has a confidence level of {confidence:.0%}.
|
| 268 |
-
Please consult with healthcare professionals for official diagnosis.</em></p>
|
| 269 |
-
<h3>Analysis Explanation:</h3>
|
| 270 |
-
<p>{explanation}</p>
|
| 271 |
-
</div>
|
| 272 |
-
"""
|
| 273 |
return html_result, plot_html
|
| 274 |
except Exception as e:
|
| 275 |
self.logger.error(f"Error in multimodal analysis: {e}")
|
| 276 |
return f"Error in multimodal analysis: {str(e)}", None
|
| 277 |
|
| 278 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 279 |
"""
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 287 |
"""
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
|
| 307 |
def fig_to_html(self, fig):
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
plt.close(fig)
|
| 317 |
-
return f'<img src="data:image/png;base64,{img_str}" style="max-width: 100%; height: auto; background: transparent;"/>'
|
| 318 |
-
except Exception as e:
|
| 319 |
-
self.logger.error(f"Error converting figure to HTML: {e}")
|
| 320 |
-
return "<p>Error displaying visualization.</p>"
|
| 321 |
|
| 322 |
def complete_appointment(appointment_id):
|
| 323 |
try:
|
|
@@ -352,7 +332,6 @@ def complete_appointment(appointment_id):
|
|
| 352 |
return {"status": "error", "message": f"Error: {str(e)}"}
|
| 353 |
|
| 354 |
def create_interface():
|
| 355 |
-
import urllib.parse
|
| 356 |
app = MediSyncApp()
|
| 357 |
example_report = """
|
| 358 |
CHEST X-RAY EXAMINATION
|
|
@@ -378,7 +357,7 @@ def create_interface():
|
|
| 378 |
|
| 379 |
with gr.Blocks(
|
| 380 |
title="MediSync: Multi-Modal Medical Analysis System",
|
| 381 |
-
theme=gr.themes.Default(),
|
| 382 |
css="""
|
| 383 |
/* Modern neumorphic card style for all result containers */
|
| 384 |
.medisync-card {
|
|
@@ -394,12 +373,8 @@ def create_interface():
|
|
| 394 |
color: var(--body-text-color, #222);
|
| 395 |
}
|
| 396 |
.medisync-title {
|
| 397 |
-
font-weight:
|
| 398 |
-
font-size: 1.45em;
|
| 399 |
margin-bottom: 0.7em;
|
| 400 |
-
letter-spacing: 1px;
|
| 401 |
-
text-shadow: 0 2px 8px #00bfae33, 0 1px 0 #fff;
|
| 402 |
-
/* Remove display:flex and gap for simple bold text */
|
| 403 |
}
|
| 404 |
.medisync-blue { color: #00bfae; }
|
| 405 |
.medisync-green { color: #28a745; }
|
|
@@ -414,10 +389,7 @@ def create_interface():
|
|
| 414 |
.gr-button, .end-consultation-btn {
|
| 415 |
border-radius: 8px !important;
|
| 416 |
font-weight: 600 !important;
|
| 417 |
-
font-size:
|
| 418 |
-
padding: 8px 18px !important;
|
| 419 |
-
min-width: 120px !important;
|
| 420 |
-
min-height: 38px !important;
|
| 421 |
transition: background 0.2s, color 0.2s;
|
| 422 |
}
|
| 423 |
.end-consultation-btn {
|
|
@@ -425,10 +397,6 @@ def create_interface():
|
|
| 425 |
border: none !important;
|
| 426 |
color: #fff !important;
|
| 427 |
box-shadow: 0 2px 8px 0 rgba(220,53,69,0.10);
|
| 428 |
-
font-size: 1.05rem !important;
|
| 429 |
-
padding: 10px 24px !important;
|
| 430 |
-
min-width: 160px !important;
|
| 431 |
-
min-height: 40px !important;
|
| 432 |
}
|
| 433 |
.end-consultation-btn:hover {
|
| 434 |
background: linear-gradient(90deg, #c82333 60%, #ff7675 100%) !important;
|
|
@@ -436,17 +404,14 @@ def create_interface():
|
|
| 436 |
/* Responsive tweaks */
|
| 437 |
@media (max-width: 900px) {
|
| 438 |
.medisync-card { padding: 16px 8px 12px 8px; }
|
| 439 |
-
.medisync-title { font-size: 1.1em; }
|
| 440 |
}
|
| 441 |
/* Ensure text is visible in dark mode */
|
| 442 |
-
html[data-theme="dark"] .medisync-card-bg
|
| 443 |
-
html[data-theme="dark"] .medisync-card-bg.medisync-force-text {
|
| 444 |
background: #23272f !important;
|
| 445 |
color: #f8fafc !important;
|
| 446 |
}
|
| 447 |
html[data-theme="dark"] .medisync-title {
|
| 448 |
color: #00bfae !important;
|
| 449 |
-
text-shadow: 0 2px 8px #00bfae33, 0 1px 0 #23272f;
|
| 450 |
}
|
| 451 |
html[data-theme="dark"] .medisync-blue { color: #00bfae !important; }
|
| 452 |
html[data-theme="dark"] .medisync-green { color: #00e676 !important; }
|
|
@@ -458,72 +423,22 @@ def create_interface():
|
|
| 458 |
html[data-theme="dark"] label, html[data-theme="dark"] .gr-label, html[data-theme="dark"] .gr-text, html[data-theme="dark"] .gr-html, html[data-theme="dark"] .gr-markdown {
|
| 459 |
color: #f8fafc !important;
|
| 460 |
}
|
| 461 |
-
/* Force all text in medisync-card and status outputs to be visible in all themes */
|
| 462 |
-
.medisync-force-text, .medisync-force-text * {
|
| 463 |
-
color: var(--body-text-color, #222) !important;
|
| 464 |
-
}
|
| 465 |
-
html[data-theme="dark"] .medisync-force-text, html[data-theme="dark"] .medisync-force-text * {
|
| 466 |
-
color: #f8fafc !important;
|
| 467 |
-
}
|
| 468 |
-
/* End consultation status output: remove color and theme, keep text black and simple */
|
| 469 |
-
#end_consultation_status, #end_consultation_status * {
|
| 470 |
-
color: #000 !important;
|
| 471 |
-
background: #fff !important;
|
| 472 |
-
font-size: 1.12rem !important;
|
| 473 |
-
font-weight: 600 !important;
|
| 474 |
-
}
|
| 475 |
-
/* Style the buttons inside the end consultation status popup */
|
| 476 |
-
#end_consultation_status button {
|
| 477 |
-
font-size: 1rem !important;
|
| 478 |
-
font-weight: 600 !important;
|
| 479 |
-
border-radius: 6px !important;
|
| 480 |
-
padding: 8px 18px !important;
|
| 481 |
-
margin-top: 8px !important;
|
| 482 |
-
margin-bottom: 4px !important;
|
| 483 |
-
min-width: 120px !important;
|
| 484 |
-
min-height: 36px !important;
|
| 485 |
-
box-shadow: 0 1.5px 4px 0 rgba(0,191,174,0.08);
|
| 486 |
-
}
|
| 487 |
-
#end_consultation_status button:active, #end_consultation_status button:focus {
|
| 488 |
-
outline: 2px solid #00bfae !important;
|
| 489 |
-
}
|
| 490 |
-
#end_consultation_status .btn-green {
|
| 491 |
-
background-color: #00bfae !important;
|
| 492 |
-
color: #fff !important;
|
| 493 |
-
}
|
| 494 |
-
#end_consultation_status .btn-purple {
|
| 495 |
-
background-color: #6c63ff !important;
|
| 496 |
-
color: #fff !important;
|
| 497 |
-
}
|
| 498 |
-
#end_consultation_status .btn-dark {
|
| 499 |
-
background-color: #23272f !important;
|
| 500 |
-
color: #fff !important;
|
| 501 |
-
}
|
| 502 |
-
#end_consultation_status .btn-orange {
|
| 503 |
-
background-color: #ff9800 !important;
|
| 504 |
-
color: #fff !important;
|
| 505 |
-
}
|
| 506 |
-
#end_consultation_status .btn-red {
|
| 507 |
-
background-color: #dc3545 !important;
|
| 508 |
-
color: #fff !important;
|
| 509 |
-
}
|
| 510 |
"""
|
| 511 |
) as interface:
|
| 512 |
gr.Markdown(
|
| 513 |
"""
|
| 514 |
-
<div style="margin-bottom: 0.5em;">
|
| 515 |
-
<
|
| 516 |
-
|
| 517 |
-
</span>
|
| 518 |
</div>
|
| 519 |
-
<div style="font-size: 1.
|
| 520 |
-
<span>AI-powered Multi-Modal Medical Analysis System</span>
|
| 521 |
</div>
|
| 522 |
-
<div style="font-size: 1.
|
| 523 |
-
<span>Seamlessly analyze X-ray images and medical reports for comprehensive healthcare insights.</span>
|
| 524 |
</div>
|
| 525 |
<div style="margin-bottom: 1.2em;">
|
| 526 |
-
<ul style="font-size: 1.
|
| 527 |
<li>Upload a chest X-ray image</li>
|
| 528 |
<li>Enter the corresponding medical report text</li>
|
| 529 |
<li>Choose the analysis type: <b>Image</b>, <b>Text</b>, or <b>Multimodal</b></li>
|
|
@@ -533,7 +448,7 @@ def create_interface():
|
|
| 533 |
""",
|
| 534 |
elem_id="medisync-header"
|
| 535 |
)
|
| 536 |
-
|
| 537 |
with gr.Row():
|
| 538 |
import urllib.parse
|
| 539 |
try:
|
|
@@ -558,7 +473,7 @@ def create_interface():
|
|
| 558 |
with gr.Row():
|
| 559 |
with gr.Column():
|
| 560 |
multi_img_input = gr.Image(label="Upload X-ray Image", type="pil", elem_id="multi_img_input")
|
| 561 |
-
multi_img_enhance = gr.Button("Enhance Image")
|
| 562 |
multi_text_input = gr.Textbox(
|
| 563 |
label="Enter Medical Report Text",
|
| 564 |
placeholder="Enter the radiologist's report text here...",
|
|
@@ -566,7 +481,7 @@ def create_interface():
|
|
| 566 |
value=example_report if sample_image_path is None else None,
|
| 567 |
elem_id="multi_text_input"
|
| 568 |
)
|
| 569 |
-
multi_analyze_btn = gr.Button("Analyze Image & Text", variant="primary")
|
| 570 |
with gr.Column():
|
| 571 |
multi_results = gr.HTML(label="Analysis Results", elem_id="multi_results")
|
| 572 |
multi_plot = gr.HTML(label="Visualization", elem_id="multi_plot")
|
|
@@ -581,8 +496,8 @@ def create_interface():
|
|
| 581 |
with gr.Row():
|
| 582 |
with gr.Column():
|
| 583 |
img_input = gr.Image(label="Upload X-ray Image", type="pil", elem_id="img_input")
|
| 584 |
-
img_enhance = gr.Button("Enhance Image")
|
| 585 |
-
img_analyze_btn = gr.Button("Analyze Image", variant="primary")
|
| 586 |
with gr.Column():
|
| 587 |
img_output = gr.Image(label="Processed Image", elem_id="img_output")
|
| 588 |
img_results = gr.HTML(label="Analysis Results", elem_id="img_results")
|
|
@@ -604,7 +519,7 @@ def create_interface():
|
|
| 604 |
value=example_report,
|
| 605 |
elem_id="text_input"
|
| 606 |
)
|
| 607 |
-
text_analyze_btn = gr.Button("Analyze Text", variant="primary")
|
| 608 |
with gr.Column():
|
| 609 |
text_output = gr.Textbox(label="Processed Text", elem_id="text_output")
|
| 610 |
text_results = gr.HTML(label="Analysis Results", elem_id="text_results")
|
|
@@ -621,17 +536,16 @@ def create_interface():
|
|
| 621 |
"End Consultation",
|
| 622 |
variant="stop",
|
| 623 |
size="lg",
|
| 624 |
-
elem_classes=["end-consultation-btn"]
|
|
|
|
| 625 |
)
|
| 626 |
end_consultation_status = gr.HTML(label="Status", elem_id="end_consultation_status")
|
| 627 |
|
| 628 |
with gr.Tab("ℹ️ About"):
|
| 629 |
gr.Markdown(
|
| 630 |
"""
|
| 631 |
-
<div class="medisync-card medisync-card-bg
|
| 632 |
-
<h2 class="medisync-title medisync-blue">
|
| 633 |
-
<b>About MediSync</b>
|
| 634 |
-
</h2>
|
| 635 |
<p>
|
| 636 |
<b>MediSync</b> is an AI-powered healthcare solution that uses multi-modal analysis to provide comprehensive insights from medical images and reports.
|
| 637 |
</p>
|
|
@@ -676,23 +590,22 @@ def create_interface():
|
|
| 676 |
)
|
| 677 |
|
| 678 |
def handle_end_consultation(appointment_id):
|
| 679 |
-
# Output status: styled with color for buttons and clear status box, as per template
|
| 680 |
if not appointment_id or appointment_id.strip() == "":
|
| 681 |
-
return "<div style='color: #
|
| 682 |
result = complete_appointment(appointment_id.strip())
|
| 683 |
if result["status"] == "success":
|
| 684 |
doctors_urls = get_doctors_page_urls()
|
| 685 |
html_response = f"""
|
| 686 |
-
<div style='color: #
|
| 687 |
-
<h3
|
| 688 |
-
<p
|
| 689 |
<p>Your appointment has been marked as completed.</p>
|
| 690 |
-
<button
|
| 691 |
-
style="margin-top: 10px;">
|
| 692 |
Return to Doctors Page (Local)
|
| 693 |
</button>
|
| 694 |
-
<button
|
| 695 |
-
style="margin-top: 10px; margin-left: 10px;">
|
| 696 |
Return to Doctors Page (Production)
|
| 697 |
</button>
|
| 698 |
</div>
|
|
@@ -700,8 +613,8 @@ def create_interface():
|
|
| 700 |
else:
|
| 701 |
if "Cannot connect to Flask app" in result['message']:
|
| 702 |
html_response = f"""
|
| 703 |
-
<div style='color: #
|
| 704 |
-
<h3
|
| 705 |
<p>Your consultation analysis is complete! However, we cannot automatically mark your appointment as completed because the Flask app is not accessible from this environment.</p>
|
| 706 |
<p><strong>Appointment ID:</strong> {appointment_id.strip()}</p>
|
| 707 |
<p><strong>Next Steps:</strong></p>
|
|
@@ -711,13 +624,16 @@ def create_interface():
|
|
| 711 |
<li>Manually complete the appointment using the appointment ID</li>
|
| 712 |
</ol>
|
| 713 |
<div style="margin-top: 15px;">
|
| 714 |
-
<button
|
|
|
|
| 715 |
Complete Appointment
|
| 716 |
</button>
|
| 717 |
-
<button
|
|
|
|
| 718 |
Return to Doctors Page
|
| 719 |
</button>
|
| 720 |
-
<button
|
|
|
|
| 721 |
Copy Appointment ID
|
| 722 |
</button>
|
| 723 |
</div>
|
|
@@ -725,8 +641,8 @@ def create_interface():
|
|
| 725 |
"""
|
| 726 |
else:
|
| 727 |
html_response = f"""
|
| 728 |
-
<div style='color: #
|
| 729 |
-
<h3
|
| 730 |
<p>{result['message']}</p>
|
| 731 |
<p>Please try again or contact support if the problem persists.</p>
|
| 732 |
</div>
|
|
@@ -739,8 +655,7 @@ def create_interface():
|
|
| 739 |
outputs=[end_consultation_status]
|
| 740 |
)
|
| 741 |
|
| 742 |
-
#
|
| 743 |
-
# # JavaScript for appointment ID auto-population
|
| 744 |
gr.HTML("""
|
| 745 |
<script>
|
| 746 |
function getUrlParameter(name) {
|
|
@@ -772,4 +687,6 @@ def create_interface():
|
|
| 772 |
interface.launch()
|
| 773 |
|
| 774 |
if __name__ == "__main__":
|
| 775 |
-
create_interface()
|
|
|
|
|
|
|
|
|
| 8 |
import matplotlib.pyplot as plt
|
| 9 |
from PIL import Image
|
| 10 |
|
| 11 |
+
# # Import configuration for end consultation logic
|
| 12 |
+
# try:
|
| 13 |
+
# from .config import get_flask_urls, get_doctors_page_urls, TIMEOUT_SETTINGS
|
| 14 |
+
# except ImportError:
|
| 15 |
+
# def get_flask_urls():
|
| 16 |
+
# return [
|
| 17 |
+
# "http://127.0.0.1:600/complete_appointment",
|
| 18 |
+
# "http://localhost:600/complete_appointment",
|
| 19 |
+
# "https://your-flask-app-domain.com/complete_appointment",
|
| 20 |
+
# "http://your-flask-app-ip:600/complete_appointment"
|
| 21 |
+
# ]
|
| 22 |
+
# def get_doctors_page_urls():
|
| 23 |
+
# return {
|
| 24 |
+
# "local": "http://127.0.0.1:600/doctors",
|
| 25 |
+
# "production": "https://your-flask-app-domain.com/doctors"
|
| 26 |
+
# }
|
| 27 |
+
# TIMEOUT_SETTINGS = {"connection_timeout": 5, "request_timeout": 10}
|
| 28 |
+
|
| 29 |
+
# Add parent directory to path
|
| 30 |
+
parent_dir = os.path.dirname(os.path.abspath(__file__))
|
| 31 |
+
sys.path.append(parent_dir)
|
| 32 |
+
|
| 33 |
+
# Import our modules for model and utility logic
|
| 34 |
+
from models.multimodal_fusion import MultimodalFusion
|
| 35 |
+
from utils.preprocessing import enhance_xray_image, normalize_report_text
|
| 36 |
+
from utils.visualization import (
|
| 37 |
+
plot_image_prediction,
|
| 38 |
+
plot_multimodal_results,
|
| 39 |
+
plot_report_entities,
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
# Set up logging
|
| 43 |
+
logging.basicConfig(
|
| 44 |
+
level=logging.INFO,
|
| 45 |
+
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
|
| 46 |
+
handlers=[logging.StreamHandler(), logging.FileHandler("mediSync.log")],
|
| 47 |
+
)
|
| 48 |
+
logger = logging.getLogger(__name__)
|
| 49 |
+
|
| 50 |
+
# Ensure sample data directory exists
|
| 51 |
+
os.makedirs(os.path.join(parent_dir, "data", "sample"), exist_ok=True)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
# Import configuration
|
| 56 |
try:
|
| 57 |
from .config import get_flask_urls, get_doctors_page_urls, TIMEOUT_SETTINGS
|
| 58 |
except ImportError:
|
|
|
|
| 70 |
}
|
| 71 |
TIMEOUT_SETTINGS = {"connection_timeout": 5, "request_timeout": 10}
|
| 72 |
|
|
|
|
| 73 |
parent_dir = os.path.dirname(os.path.abspath(__file__))
|
| 74 |
sys.path.append(parent_dir)
|
| 75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
logging.basicConfig(
|
| 77 |
level=logging.INFO,
|
| 78 |
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
|
|
|
|
| 80 |
)
|
| 81 |
logger = logging.getLogger(__name__)
|
| 82 |
|
|
|
|
|
|
|
|
|
|
| 83 |
class MediSyncApp:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
def __init__(self):
|
|
|
|
| 85 |
self.logger = logging.getLogger(__name__)
|
| 86 |
self.logger.info("Initializing MediSync application")
|
| 87 |
+
self._temp_files = []
|
| 88 |
self.fusion_model = None
|
| 89 |
self.image_model = None
|
| 90 |
self.text_model = None
|
| 91 |
|
| 92 |
+
def __del__(self):
|
| 93 |
+
self.cleanup_temp_files()
|
|
|
|
| 94 |
|
| 95 |
+
def cleanup_temp_files(self):
|
| 96 |
+
for temp_file in self._temp_files:
|
| 97 |
+
try:
|
| 98 |
+
if os.path.exists(temp_file):
|
| 99 |
+
os.remove(temp_file)
|
| 100 |
+
self.logger.debug(f"Cleaned up temporary file: {temp_file}")
|
| 101 |
+
except Exception as e:
|
| 102 |
+
self.logger.warning(f"Failed to clean up temporary file {temp_file}: {e}")
|
| 103 |
+
self._temp_files = []
|
| 104 |
+
|
| 105 |
+
def load_models(self):
|
| 106 |
+
if self.fusion_model is not None:
|
| 107 |
+
return True
|
| 108 |
try:
|
| 109 |
+
self.logger.info("Loading models...")
|
| 110 |
+
self.logger.info("Models loaded successfully (mock implementation)")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
return True
|
| 112 |
except Exception as e:
|
| 113 |
self.logger.error(f"Error loading models: {e}")
|
| 114 |
return False
|
| 115 |
|
| 116 |
+
def enhance_image(self, image):
|
| 117 |
+
if image is None:
|
| 118 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
try:
|
| 120 |
+
enhanced_image = image
|
| 121 |
+
self.logger.info("Image enhanced successfully")
|
| 122 |
+
return enhanced_image
|
| 123 |
+
except Exception as e:
|
| 124 |
+
self.logger.error(f"Error enhancing image: {e}")
|
| 125 |
+
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
+
def analyze_image(self, image):
|
| 128 |
+
if image is None:
|
| 129 |
+
return None, "Please upload an image first.", None
|
| 130 |
+
if not self.load_models():
|
| 131 |
+
return image, "Error: Models not loaded properly.", None
|
| 132 |
+
try:
|
| 133 |
+
self.logger.info("Analyzing image")
|
| 134 |
+
results = {
|
| 135 |
+
"primary_finding": "Normal chest X-ray",
|
| 136 |
+
"confidence": 0.85,
|
| 137 |
+
"has_abnormality": False,
|
| 138 |
+
"predictions": [
|
| 139 |
+
("Normal", 0.85),
|
| 140 |
+
("Pneumonia", 0.10),
|
| 141 |
+
("Cardiomegaly", 0.05)
|
| 142 |
+
]
|
| 143 |
+
}
|
| 144 |
+
fig = self.plot_image_prediction(
|
| 145 |
image,
|
| 146 |
results.get("predictions", []),
|
| 147 |
+
f"Primary Finding: {results.get('primary_finding', 'Unknown')}"
|
| 148 |
)
|
| 149 |
plot_html = self.fig_to_html(fig)
|
| 150 |
+
plt.close(fig)
|
| 151 |
+
html_result = self.format_image_results(results)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
return image, html_result, plot_html
|
| 153 |
except Exception as e:
|
| 154 |
self.logger.error(f"Error in image analysis: {e}")
|
| 155 |
return image, f"Error analyzing image: {str(e)}", None
|
| 156 |
|
| 157 |
def analyze_text(self, text):
|
| 158 |
+
if not text or text.strip() == "":
|
| 159 |
+
return "", "Please enter medical report text.", None
|
| 160 |
+
if not self.load_models():
|
| 161 |
+
return text, "Error: Models not loaded properly.", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
try:
|
| 163 |
+
self.logger.info("Analyzing text")
|
| 164 |
+
results = {
|
| 165 |
+
"entities": [
|
| 166 |
+
{"text": "chest X-ray", "type": "PROCEDURE", "confidence": 0.95},
|
| 167 |
+
{"text": "55-year-old male", "type": "PATIENT", "confidence": 0.90},
|
| 168 |
+
{"text": "cough and fever", "type": "SYMPTOM", "confidence": 0.88}
|
| 169 |
+
],
|
| 170 |
+
"sentiment": "neutral",
|
| 171 |
+
"key_findings": ["Normal heart size", "Clear lungs", "8mm nodular opacity"]
|
| 172 |
+
}
|
| 173 |
+
html_result = self.format_text_results(results)
|
| 174 |
+
plot_html = self.create_entity_visualization(results["entities"])
|
| 175 |
+
return text, html_result, plot_html
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
except Exception as e:
|
| 177 |
self.logger.error(f"Error in text analysis: {e}")
|
| 178 |
return text, f"Error analyzing text: {str(e)}", None
|
| 179 |
|
| 180 |
def analyze_multimodal(self, image, text):
|
| 181 |
+
if image is None and (not text or text.strip() == ""):
|
| 182 |
+
return "Please provide either an image or text for analysis.", None
|
| 183 |
+
if not self.load_models():
|
| 184 |
+
return "Error: Models not loaded properly.", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
self.logger.info("Performing multimodal analysis")
|
| 187 |
+
results = {
|
| 188 |
+
"combined_finding": "Normal chest X-ray with minor findings",
|
| 189 |
+
"confidence": 0.92,
|
| 190 |
+
"image_contribution": "Normal cardiac silhouette and clear lung fields",
|
| 191 |
+
"text_contribution": "Clinical history supports normal findings",
|
| 192 |
+
"recommendations": [
|
| 193 |
+
"Follow-up CT for the 8mm nodular opacity",
|
| 194 |
+
"Monitor for any changes in symptoms"
|
| 195 |
+
]
|
| 196 |
+
}
|
| 197 |
+
html_result = self.format_multimodal_results(results)
|
| 198 |
+
plot_html = self.create_multimodal_visualization(results)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
return html_result, plot_html
|
| 200 |
except Exception as e:
|
| 201 |
self.logger.error(f"Error in multimodal analysis: {e}")
|
| 202 |
return f"Error in multimodal analysis: {str(e)}", None
|
| 203 |
|
| 204 |
+
def format_image_results(self, results):
|
| 205 |
+
html_result = f"""
|
| 206 |
+
<div class="medisync-card medisync-card-bg">
|
| 207 |
+
<h2 class="medisync-title medisync-blue">X-ray Analysis Results</h2>
|
| 208 |
+
<p><strong>Primary Finding:</strong> {results.get("primary_finding", "Unknown")}</p>
|
| 209 |
+
<p><strong>Confidence:</strong> {results.get("confidence", 0):.1%}</p>
|
| 210 |
+
<p><strong>Abnormality Detected:</strong> {"Yes" if results.get("has_abnormality", False) else "No"}</p>
|
| 211 |
+
<h3>Top Predictions:</h3>
|
| 212 |
+
<ul>
|
| 213 |
"""
|
| 214 |
+
for label, prob in results.get("predictions", [])[:5]:
|
| 215 |
+
html_result += f"<li>{label}: {prob:.1%}</li>"
|
| 216 |
+
html_result += "</ul></div>"
|
| 217 |
+
return html_result
|
| 218 |
+
|
| 219 |
+
def format_text_results(self, results):
|
| 220 |
+
html_result = f"""
|
| 221 |
+
<div class="medisync-card medisync-card-bg">
|
| 222 |
+
<h2 class="medisync-title medisync-green">Text Analysis Results</h2>
|
| 223 |
+
<p><strong>Sentiment:</strong> {results.get("sentiment", "Unknown").title()}</p>
|
| 224 |
+
<h3>Key Findings:</h3>
|
| 225 |
+
<ul>
|
| 226 |
"""
|
| 227 |
+
for finding in results.get("key_findings", []):
|
| 228 |
+
html_result += f"<li>{finding}</li>"
|
| 229 |
+
html_result += "</ul>"
|
| 230 |
+
html_result += "<h3>Extracted Entities:</h3><ul>"
|
| 231 |
+
for entity in results.get("entities", [])[:5]:
|
| 232 |
+
html_result += f"<li><strong>{entity['text']}</strong> ({entity['type']}) - {entity['confidence']:.1%}</li>"
|
| 233 |
+
html_result += "</ul></div>"
|
| 234 |
+
return html_result
|
| 235 |
+
|
| 236 |
+
def format_multimodal_results(self, results):
|
| 237 |
+
html_result = f"""
|
| 238 |
+
<div class="medisync-card medisync-card-bg">
|
| 239 |
+
<h2 class="medisync-title medisync-purple">Multimodal Analysis Results</h2>
|
| 240 |
+
<p><strong>Combined Finding:</strong> {results.get("combined_finding", "Unknown")}</p>
|
| 241 |
+
<p><strong>Overall Confidence:</strong> {results.get("confidence", 0):.1%}</p>
|
| 242 |
+
<h3>Image Contribution:</h3>
|
| 243 |
+
<p>{results.get("image_contribution", "No image analysis available")}</p>
|
| 244 |
+
<h3>Text Contribution:</h3>
|
| 245 |
+
<p>{results.get("text_contribution", "No text analysis available")}</p>
|
| 246 |
+
<h3>Recommendations:</h3>
|
| 247 |
+
<ul>
|
| 248 |
+
"""
|
| 249 |
+
for rec in results.get("recommendations", []):
|
| 250 |
+
html_result += f"<li>{rec}</li>"
|
| 251 |
+
html_result += "</ul></div>"
|
| 252 |
+
return html_result
|
| 253 |
+
|
| 254 |
+
def plot_image_prediction(self, image, predictions, title):
|
| 255 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
| 256 |
+
ax.imshow(image)
|
| 257 |
+
ax.set_title(title, fontsize=14, fontweight='bold', color='#007bff')
|
| 258 |
+
ax.axis('off')
|
| 259 |
+
return fig
|
| 260 |
+
|
| 261 |
+
def create_entity_visualization(self, entities):
|
| 262 |
+
if not entities:
|
| 263 |
+
return "<p>No entities found in text.</p>"
|
| 264 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
| 265 |
+
entity_types = {}
|
| 266 |
+
for entity in entities:
|
| 267 |
+
entity_type = entity['type']
|
| 268 |
+
if entity_type not in entity_types:
|
| 269 |
+
entity_types[entity_type] = 0
|
| 270 |
+
entity_types[entity_type] += 1
|
| 271 |
+
if entity_types:
|
| 272 |
+
ax.bar(entity_types.keys(), entity_types.values(), color='#00bfae')
|
| 273 |
+
ax.set_title('Entity Types Found in Text', fontsize=14, fontweight='bold', color='#00bfae')
|
| 274 |
+
ax.set_ylabel('Count', color='#00bfae')
|
| 275 |
+
plt.xticks(rotation=45, color='#222')
|
| 276 |
+
plt.yticks(color='#222')
|
| 277 |
+
return self.fig_to_html(fig)
|
| 278 |
+
|
| 279 |
+
def create_multimodal_visualization(self, results):
|
| 280 |
+
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6))
|
| 281 |
+
confidence = results.get("confidence", 0)
|
| 282 |
+
ax1.pie([confidence, 1-confidence], labels=['Confidence', 'Uncertainty'],
|
| 283 |
+
colors=['#00bfae', '#ff7675'], autopct='%1.1f%%', textprops={'color': '#222'})
|
| 284 |
+
ax1.set_title('Analysis Confidence', fontweight='bold', color='#00bfae')
|
| 285 |
+
recommendations = results.get("recommendations", [])
|
| 286 |
+
ax2.bar(['Recommendations'], [len(recommendations)], color='#6c63ff')
|
| 287 |
+
ax2.set_title('Number of Recommendations', fontweight='bold', color='#6c63ff')
|
| 288 |
+
ax2.set_ylabel('Count', color='#6c63ff')
|
| 289 |
+
plt.tight_layout()
|
| 290 |
+
return self.fig_to_html(fig)
|
| 291 |
|
| 292 |
def fig_to_html(self, fig):
|
| 293 |
+
import io
|
| 294 |
+
import base64
|
| 295 |
+
buf = io.BytesIO()
|
| 296 |
+
fig.savefig(buf, format='png', bbox_inches='tight', dpi=100, facecolor=fig.get_facecolor())
|
| 297 |
+
buf.seek(0)
|
| 298 |
+
img_str = base64.b64encode(buf.read()).decode()
|
| 299 |
+
buf.close()
|
| 300 |
+
return f'<img src="data:image/png;base64,{img_str}" style="max-width: 100%; height: auto; background: transparent;"/>'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 301 |
|
| 302 |
def complete_appointment(appointment_id):
|
| 303 |
try:
|
|
|
|
| 332 |
return {"status": "error", "message": f"Error: {str(e)}"}
|
| 333 |
|
| 334 |
def create_interface():
|
|
|
|
| 335 |
app = MediSyncApp()
|
| 336 |
example_report = """
|
| 337 |
CHEST X-RAY EXAMINATION
|
|
|
|
| 357 |
|
| 358 |
with gr.Blocks(
|
| 359 |
title="MediSync: Multi-Modal Medical Analysis System",
|
| 360 |
+
theme=gr.themes.Default(), # Use Default for HuggingFace dark/light support
|
| 361 |
css="""
|
| 362 |
/* Modern neumorphic card style for all result containers */
|
| 363 |
.medisync-card {
|
|
|
|
| 373 |
color: var(--body-text-color, #222);
|
| 374 |
}
|
| 375 |
.medisync-title {
|
| 376 |
+
font-weight: 700;
|
|
|
|
| 377 |
margin-bottom: 0.7em;
|
|
|
|
|
|
|
|
|
|
| 378 |
}
|
| 379 |
.medisync-blue { color: #00bfae; }
|
| 380 |
.medisync-green { color: #28a745; }
|
|
|
|
| 389 |
.gr-button, .end-consultation-btn {
|
| 390 |
border-radius: 8px !important;
|
| 391 |
font-weight: 600 !important;
|
| 392 |
+
font-size: 1.08rem !important;
|
|
|
|
|
|
|
|
|
|
| 393 |
transition: background 0.2s, color 0.2s;
|
| 394 |
}
|
| 395 |
.end-consultation-btn {
|
|
|
|
| 397 |
border: none !important;
|
| 398 |
color: #fff !important;
|
| 399 |
box-shadow: 0 2px 8px 0 rgba(220,53,69,0.10);
|
|
|
|
|
|
|
|
|
|
|
|
|
| 400 |
}
|
| 401 |
.end-consultation-btn:hover {
|
| 402 |
background: linear-gradient(90deg, #c82333 60%, #ff7675 100%) !important;
|
|
|
|
| 404 |
/* Responsive tweaks */
|
| 405 |
@media (max-width: 900px) {
|
| 406 |
.medisync-card { padding: 16px 8px 12px 8px; }
|
|
|
|
| 407 |
}
|
| 408 |
/* Ensure text is visible in dark mode */
|
| 409 |
+
html[data-theme="dark"] .medisync-card-bg {
|
|
|
|
| 410 |
background: #23272f !important;
|
| 411 |
color: #f8fafc !important;
|
| 412 |
}
|
| 413 |
html[data-theme="dark"] .medisync-title {
|
| 414 |
color: #00bfae !important;
|
|
|
|
| 415 |
}
|
| 416 |
html[data-theme="dark"] .medisync-blue { color: #00bfae !important; }
|
| 417 |
html[data-theme="dark"] .medisync-green { color: #00e676 !important; }
|
|
|
|
| 423 |
html[data-theme="dark"] label, html[data-theme="dark"] .gr-label, html[data-theme="dark"] .gr-text, html[data-theme="dark"] .gr-html, html[data-theme="dark"] .gr-markdown {
|
| 424 |
color: #f8fafc !important;
|
| 425 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 426 |
"""
|
| 427 |
) as interface:
|
| 428 |
gr.Markdown(
|
| 429 |
"""
|
| 430 |
+
<div style="display: flex; align-items: center; gap: 16px; margin-bottom: 0.5em;">
|
| 431 |
+
<img src="https://cdn.jsdelivr.net/gh/saqib-ali-buriro/medivance-assets/medivance_logo.png" alt="Medivance Logo" style="height: 38px; border-radius: 8px; background: #fff; box-shadow: 0 2px 8px 0 rgba(26,115,232,0.10);">
|
| 432 |
+
<span style="font-size: 2.1rem; font-weight: 700; color: #00bfae;">MediSync</span>
|
|
|
|
| 433 |
</div>
|
| 434 |
+
<div style="font-size: 1.18rem; margin-bottom: 1.2em;">
|
| 435 |
+
<span style="color: var(--body-text-color, #222);">AI-powered Multi-Modal Medical Analysis System</span>
|
| 436 |
</div>
|
| 437 |
+
<div style="font-size: 1.05rem; margin-bottom: 1.2em;">
|
| 438 |
+
<span style="color: var(--body-text-color, #222);">Seamlessly analyze X-ray images and medical reports for comprehensive healthcare insights.</span>
|
| 439 |
</div>
|
| 440 |
<div style="margin-bottom: 1.2em;">
|
| 441 |
+
<ul style="font-size: 1.01rem; color: var(--body-text-color, #222);">
|
| 442 |
<li>Upload a chest X-ray image</li>
|
| 443 |
<li>Enter the corresponding medical report text</li>
|
| 444 |
<li>Choose the analysis type: <b>Image</b>, <b>Text</b>, or <b>Multimodal</b></li>
|
|
|
|
| 448 |
""",
|
| 449 |
elem_id="medisync-header"
|
| 450 |
)
|
| 451 |
+
|
| 452 |
with gr.Row():
|
| 453 |
import urllib.parse
|
| 454 |
try:
|
|
|
|
| 473 |
with gr.Row():
|
| 474 |
with gr.Column():
|
| 475 |
multi_img_input = gr.Image(label="Upload X-ray Image", type="pil", elem_id="multi_img_input")
|
| 476 |
+
multi_img_enhance = gr.Button("Enhance Image", icon="✨")
|
| 477 |
multi_text_input = gr.Textbox(
|
| 478 |
label="Enter Medical Report Text",
|
| 479 |
placeholder="Enter the radiologist's report text here...",
|
|
|
|
| 481 |
value=example_report if sample_image_path is None else None,
|
| 482 |
elem_id="multi_text_input"
|
| 483 |
)
|
| 484 |
+
multi_analyze_btn = gr.Button("Analyze Image & Text", variant="primary", icon="🔎")
|
| 485 |
with gr.Column():
|
| 486 |
multi_results = gr.HTML(label="Analysis Results", elem_id="multi_results")
|
| 487 |
multi_plot = gr.HTML(label="Visualization", elem_id="multi_plot")
|
|
|
|
| 496 |
with gr.Row():
|
| 497 |
with gr.Column():
|
| 498 |
img_input = gr.Image(label="Upload X-ray Image", type="pil", elem_id="img_input")
|
| 499 |
+
img_enhance = gr.Button("Enhance Image", icon="✨")
|
| 500 |
+
img_analyze_btn = gr.Button("Analyze Image", variant="primary", icon="🔎")
|
| 501 |
with gr.Column():
|
| 502 |
img_output = gr.Image(label="Processed Image", elem_id="img_output")
|
| 503 |
img_results = gr.HTML(label="Analysis Results", elem_id="img_results")
|
|
|
|
| 519 |
value=example_report,
|
| 520 |
elem_id="text_input"
|
| 521 |
)
|
| 522 |
+
text_analyze_btn = gr.Button("Analyze Text", variant="primary", icon="🔎")
|
| 523 |
with gr.Column():
|
| 524 |
text_output = gr.Textbox(label="Processed Text", elem_id="text_output")
|
| 525 |
text_results = gr.HTML(label="Analysis Results", elem_id="text_results")
|
|
|
|
| 536 |
"End Consultation",
|
| 537 |
variant="stop",
|
| 538 |
size="lg",
|
| 539 |
+
elem_classes=["end-consultation-btn"],
|
| 540 |
+
icon="🛑"
|
| 541 |
)
|
| 542 |
end_consultation_status = gr.HTML(label="Status", elem_id="end_consultation_status")
|
| 543 |
|
| 544 |
with gr.Tab("ℹ️ About"):
|
| 545 |
gr.Markdown(
|
| 546 |
"""
|
| 547 |
+
<div class="medisync-card medisync-card-bg">
|
| 548 |
+
<h2 class="medisync-title medisync-blue">About MediSync</h2>
|
|
|
|
|
|
|
| 549 |
<p>
|
| 550 |
<b>MediSync</b> is an AI-powered healthcare solution that uses multi-modal analysis to provide comprehensive insights from medical images and reports.
|
| 551 |
</p>
|
|
|
|
| 590 |
)
|
| 591 |
|
| 592 |
def handle_end_consultation(appointment_id):
|
|
|
|
| 593 |
if not appointment_id or appointment_id.strip() == "":
|
| 594 |
+
return "<div style='color: #dc3545; padding: 10px; background-color: #ffe6e6; border-radius: 5px;'>Please enter your appointment ID first.</div>"
|
| 595 |
result = complete_appointment(appointment_id.strip())
|
| 596 |
if result["status"] == "success":
|
| 597 |
doctors_urls = get_doctors_page_urls()
|
| 598 |
html_response = f"""
|
| 599 |
+
<div style='color: #28a745; padding: 15px; background-color: #e6ffe6; border-radius: 5px; margin: 10px 0;'>
|
| 600 |
+
<h3>✅ Consultation Completed Successfully!</h3>
|
| 601 |
+
<p>{result['message']}</p>
|
| 602 |
<p>Your appointment has been marked as completed.</p>
|
| 603 |
+
<button onclick="window.open('{doctors_urls['local']}', '_blank')"
|
| 604 |
+
style="background-color: #00bfae; color: white; padding: 10px 20px; border: none; border-radius: 5px; cursor: pointer; margin-top: 10px;">
|
| 605 |
Return to Doctors Page (Local)
|
| 606 |
</button>
|
| 607 |
+
<button onclick="window.open('{doctors_urls['production']}', '_blank')"
|
| 608 |
+
style="background-color: #6c63ff; color: white; padding: 10px 20px; border: none; border-radius: 5px; cursor: pointer; margin-top: 10px; margin-left: 10px;">
|
| 609 |
Return to Doctors Page (Production)
|
| 610 |
</button>
|
| 611 |
</div>
|
|
|
|
| 613 |
else:
|
| 614 |
if "Cannot connect to Flask app" in result['message']:
|
| 615 |
html_response = f"""
|
| 616 |
+
<div style='color: #ff9800; padding: 15px; background-color: #fff3cd; border-radius: 5px; margin: 10px 0;'>
|
| 617 |
+
<h3>⚠️ Consultation Ready to Complete</h3>
|
| 618 |
<p>Your consultation analysis is complete! However, we cannot automatically mark your appointment as completed because the Flask app is not accessible from this environment.</p>
|
| 619 |
<p><strong>Appointment ID:</strong> {appointment_id.strip()}</p>
|
| 620 |
<p><strong>Next Steps:</strong></p>
|
|
|
|
| 624 |
<li>Manually complete the appointment using the appointment ID</li>
|
| 625 |
</ol>
|
| 626 |
<div style="margin-top: 15px;">
|
| 627 |
+
<button onclick="window.open('http://127.0.0.1:600/complete_appointment_manual?appointment_id={appointment_id.strip()}', '_blank')"
|
| 628 |
+
style="background-color: #00bfae; color: white; padding: 10px 20px; border: none; border-radius: 5px; cursor: pointer; margin-right: 10px;">
|
| 629 |
Complete Appointment
|
| 630 |
</button>
|
| 631 |
+
<button onclick="window.open('http://127.0.0.1:600/doctors', '_blank')"
|
| 632 |
+
style="background-color: #6c63ff; color: white; padding: 10px 20px; border: none; border-radius: 5px; cursor: pointer; margin-right: 10px;">
|
| 633 |
Return to Doctors Page
|
| 634 |
</button>
|
| 635 |
+
<button onclick="navigator.clipboard.writeText('{appointment_id.strip()}')"
|
| 636 |
+
style="background-color: #23272f; color: white; padding: 10px 20px; border: none; border-radius: 5px; cursor: pointer;">
|
| 637 |
Copy Appointment ID
|
| 638 |
</button>
|
| 639 |
</div>
|
|
|
|
| 641 |
"""
|
| 642 |
else:
|
| 643 |
html_response = f"""
|
| 644 |
+
<div style='color: #dc3545; padding: 15px; background-color: #ffe6e6; border-radius: 5px; margin: 10px 0;'>
|
| 645 |
+
<h3>❌ Error Completing Consultation</h3>
|
| 646 |
<p>{result['message']}</p>
|
| 647 |
<p>Please try again or contact support if the problem persists.</p>
|
| 648 |
</div>
|
|
|
|
| 655 |
outputs=[end_consultation_status]
|
| 656 |
)
|
| 657 |
|
| 658 |
+
# JavaScript for appointment ID auto-population
|
|
|
|
| 659 |
gr.HTML("""
|
| 660 |
<script>
|
| 661 |
function getUrlParameter(name) {
|
|
|
|
| 687 |
interface.launch()
|
| 688 |
|
| 689 |
if __name__ == "__main__":
|
| 690 |
+
create_interface()
|
| 691 |
+
|
| 692 |
+
# Some tests on this code
|