Spaces:
Paused
Paused
up
Browse files- app-dev.py +33 -23
- hi_diffusers/pipelines/hidream_image/pipeline_hidream_image.py +298 -192
app-dev.py
CHANGED
|
@@ -2,11 +2,16 @@ import gradio as gr
|
|
| 2 |
import PIL
|
| 3 |
import spaces
|
| 4 |
import torch
|
|
|
|
| 5 |
from hi_diffusers import HiDreamImagePipeline, HiDreamImageTransformer2DModel
|
| 6 |
from hi_diffusers.schedulers.flash_flow_match import (
|
| 7 |
FlashFlowMatchEulerDiscreteScheduler,
|
| 8 |
)
|
| 9 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# Constants
|
| 12 |
MODEL_PREFIX: str = "HiDream-ai"
|
|
@@ -22,29 +27,38 @@ MODEL_CONFIGS = {
|
|
| 22 |
|
| 23 |
# Supported image sizes
|
| 24 |
RESOLUTION_OPTIONS: list[str] = [
|
| 25 |
-
"1024 x 1024
|
| 26 |
-
"768 x 1360
|
| 27 |
-
"1360 x 768
|
| 28 |
-
"880 x 1168
|
| 29 |
-
"1168 x 880
|
| 30 |
-
"1248 x 832
|
| 31 |
-
"832 x 1248
|
| 32 |
]
|
| 33 |
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
tokenizer = AutoTokenizer.from_pretrained(LLAMA_MODEL_NAME, use_fast=False)
|
| 36 |
-
text_encoder =
|
| 37 |
LLAMA_MODEL_NAME,
|
| 38 |
output_hidden_states=True,
|
| 39 |
output_attentions=True,
|
|
|
|
|
|
|
| 40 |
torch_dtype=torch.bfloat16,
|
| 41 |
-
)
|
| 42 |
|
|
|
|
|
|
|
|
|
|
| 43 |
transformer = HiDreamImageTransformer2DModel.from_pretrained(
|
| 44 |
MODEL_PATH,
|
| 45 |
subfolder="transformer",
|
|
|
|
| 46 |
torch_dtype=torch.bfloat16,
|
| 47 |
-
)
|
| 48 |
|
| 49 |
scheduler = MODEL_CONFIGS["scheduler"](
|
| 50 |
num_train_timesteps=1000,
|
|
@@ -54,24 +68,25 @@ scheduler = MODEL_CONFIGS["scheduler"](
|
|
| 54 |
|
| 55 |
pipe = HiDreamImagePipeline.from_pretrained(
|
| 56 |
MODEL_PATH,
|
|
|
|
| 57 |
scheduler=scheduler,
|
| 58 |
tokenizer_4=tokenizer,
|
| 59 |
text_encoder_4=text_encoder,
|
|
|
|
| 60 |
torch_dtype=torch.bfloat16,
|
| 61 |
-
)
|
| 62 |
-
|
| 63 |
-
pipe.transformer = transformer
|
| 64 |
|
| 65 |
|
| 66 |
@spaces.GPU(duration=120)
|
| 67 |
def generate_image(
|
| 68 |
-
prompt: str,
|
|
|
|
|
|
|
|
|
|
| 69 |
) -> tuple[PIL.Image.Image, int]:
|
| 70 |
if seed == -1:
|
| 71 |
seed = torch.randint(0, 1_000_000, (1,)).item()
|
| 72 |
|
| 73 |
-
msg = "ℹ️ This spaces currently crash because of the memory usage. Please help me fix 😅"
|
| 74 |
-
raise gr.Error(msg, duration=10)
|
| 75 |
height, width = tuple(map(int, resolution.replace(" ", "").split("x")))
|
| 76 |
generator = torch.Generator("cuda").manual_seed(seed)
|
| 77 |
|
|
@@ -107,12 +122,7 @@ with gr.Blocks(title="HiDream Image Generator Dev") as demo:
|
|
| 107 |
)
|
| 108 |
|
| 109 |
seed = gr.Number(label="Seed (-1 for random)", value=-1, precision=0)
|
| 110 |
-
|
| 111 |
-
generate_btn = gr.Button(
|
| 112 |
-
"This space currently crash because of the memory usage. Please help me fix 😅",
|
| 113 |
-
variant="primary",
|
| 114 |
-
interactive=False,
|
| 115 |
-
)
|
| 116 |
seed_used = gr.Number(label="Seed Used", interactive=False)
|
| 117 |
|
| 118 |
with gr.Column():
|
|
|
|
| 2 |
import PIL
|
| 3 |
import spaces
|
| 4 |
import torch
|
| 5 |
+
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
|
| 6 |
from hi_diffusers import HiDreamImagePipeline, HiDreamImageTransformer2DModel
|
| 7 |
from hi_diffusers.schedulers.flash_flow_match import (
|
| 8 |
FlashFlowMatchEulerDiscreteScheduler,
|
| 9 |
)
|
| 10 |
+
from transformers import (
|
| 11 |
+
AutoModelForCausalLM,
|
| 12 |
+
AutoTokenizer,
|
| 13 |
+
)
|
| 14 |
+
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
|
| 15 |
|
| 16 |
# Constants
|
| 17 |
MODEL_PREFIX: str = "HiDream-ai"
|
|
|
|
| 27 |
|
| 28 |
# Supported image sizes
|
| 29 |
RESOLUTION_OPTIONS: list[str] = [
|
| 30 |
+
"1024 x 1024",
|
| 31 |
+
"768 x 1360",
|
| 32 |
+
"1360 x 768",
|
| 33 |
+
"880 x 1168",
|
| 34 |
+
"1168 x 880",
|
| 35 |
+
"1248 x 832",
|
| 36 |
+
"832 x 1248",
|
| 37 |
]
|
| 38 |
|
| 39 |
+
quant_config = TransformersBitsAndBytesConfig(
|
| 40 |
+
load_in_4bit=True,
|
| 41 |
+
)
|
| 42 |
|
| 43 |
tokenizer = AutoTokenizer.from_pretrained(LLAMA_MODEL_NAME, use_fast=False)
|
| 44 |
+
text_encoder = AutoModelForCausalLM.from_pretrained(
|
| 45 |
LLAMA_MODEL_NAME,
|
| 46 |
output_hidden_states=True,
|
| 47 |
output_attentions=True,
|
| 48 |
+
low_cpu_mem_usage=True,
|
| 49 |
+
quantization_config=quant_config,
|
| 50 |
torch_dtype=torch.bfloat16,
|
| 51 |
+
)
|
| 52 |
|
| 53 |
+
quant_config = DiffusersBitsAndBytesConfig(
|
| 54 |
+
load_in_4bit=True,
|
| 55 |
+
)
|
| 56 |
transformer = HiDreamImageTransformer2DModel.from_pretrained(
|
| 57 |
MODEL_PATH,
|
| 58 |
subfolder="transformer",
|
| 59 |
+
quantization_config=quant_config,
|
| 60 |
torch_dtype=torch.bfloat16,
|
| 61 |
+
)
|
| 62 |
|
| 63 |
scheduler = MODEL_CONFIGS["scheduler"](
|
| 64 |
num_train_timesteps=1000,
|
|
|
|
| 68 |
|
| 69 |
pipe = HiDreamImagePipeline.from_pretrained(
|
| 70 |
MODEL_PATH,
|
| 71 |
+
transformer=transformer,
|
| 72 |
scheduler=scheduler,
|
| 73 |
tokenizer_4=tokenizer,
|
| 74 |
text_encoder_4=text_encoder,
|
| 75 |
+
device_map="balanced",
|
| 76 |
torch_dtype=torch.bfloat16,
|
| 77 |
+
)
|
|
|
|
|
|
|
| 78 |
|
| 79 |
|
| 80 |
@spaces.GPU(duration=120)
|
| 81 |
def generate_image(
|
| 82 |
+
prompt: str,
|
| 83 |
+
resolution: str,
|
| 84 |
+
seed: int,
|
| 85 |
+
progress=gr.Progress(track_tqdm=True), # noqa: ARG001, B008
|
| 86 |
) -> tuple[PIL.Image.Image, int]:
|
| 87 |
if seed == -1:
|
| 88 |
seed = torch.randint(0, 1_000_000, (1,)).item()
|
| 89 |
|
|
|
|
|
|
|
| 90 |
height, width = tuple(map(int, resolution.replace(" ", "").split("x")))
|
| 91 |
generator = torch.Generator("cuda").manual_seed(seed)
|
| 92 |
|
|
|
|
| 122 |
)
|
| 123 |
|
| 124 |
seed = gr.Number(label="Seed (-1 for random)", value=-1, precision=0)
|
| 125 |
+
generate_btn = gr.Button("Generate Image", variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
seed_used = gr.Number(label="Seed Used", interactive=False)
|
| 127 |
|
| 128 |
with gr.Column():
|
hi_diffusers/pipelines/hidream_image/pipeline_hidream_image.py
CHANGED
|
@@ -1,31 +1,34 @@
|
|
| 1 |
import inspect
|
| 2 |
-
from typing import Any, Callable, Dict, List, Optional, Union
|
| 3 |
import math
|
|
|
|
|
|
|
|
|
|
| 4 |
import einops
|
| 5 |
import torch
|
| 6 |
-
from transformers import (
|
| 7 |
-
CLIPTextModelWithProjection,
|
| 8 |
-
CLIPTokenizer,
|
| 9 |
-
T5EncoderModel,
|
| 10 |
-
T5Tokenizer,
|
| 11 |
-
LlamaForCausalLM,
|
| 12 |
-
PreTrainedTokenizerFast
|
| 13 |
-
)
|
| 14 |
-
|
| 15 |
from diffusers.image_processor import VaeImageProcessor
|
| 16 |
from diffusers.loaders import FromSingleFileMixin
|
| 17 |
from diffusers.models.autoencoders import AutoencoderKL
|
|
|
|
| 18 |
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
| 19 |
from diffusers.utils import (
|
| 20 |
-
USE_PEFT_BACKEND,
|
| 21 |
is_torch_xla_available,
|
| 22 |
logging,
|
| 23 |
)
|
| 24 |
from diffusers.utils.torch_utils import randn_tensor
|
| 25 |
-
from
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
from ...schedulers.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
|
|
|
| 29 |
|
| 30 |
if is_torch_xla_available():
|
| 31 |
import torch_xla.core.xla_model as xm
|
|
@@ -36,6 +39,7 @@ else:
|
|
| 36 |
|
| 37 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 38 |
|
|
|
|
| 39 |
# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
|
| 40 |
def calculate_shift(
|
| 41 |
image_seq_len,
|
|
@@ -49,13 +53,14 @@ def calculate_shift(
|
|
| 49 |
mu = image_seq_len * m + b
|
| 50 |
return mu
|
| 51 |
|
|
|
|
| 52 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
| 53 |
def retrieve_timesteps(
|
| 54 |
scheduler,
|
| 55 |
-
num_inference_steps:
|
| 56 |
-
device:
|
| 57 |
-
timesteps:
|
| 58 |
-
sigmas:
|
| 59 |
**kwargs,
|
| 60 |
):
|
| 61 |
r"""
|
|
@@ -80,26 +85,34 @@ def retrieve_timesteps(
|
|
| 80 |
Returns:
|
| 81 |
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
| 82 |
second element is the number of inference steps.
|
|
|
|
| 83 |
"""
|
| 84 |
if timesteps is not None and sigmas is not None:
|
| 85 |
-
|
|
|
|
| 86 |
if timesteps is not None:
|
| 87 |
-
accepts_timesteps = "timesteps" in set(
|
|
|
|
|
|
|
| 88 |
if not accepts_timesteps:
|
| 89 |
-
|
| 90 |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 91 |
f" timestep schedules. Please check whether you are using the correct scheduler."
|
| 92 |
)
|
|
|
|
| 93 |
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
| 94 |
timesteps = scheduler.timesteps
|
| 95 |
num_inference_steps = len(timesteps)
|
| 96 |
elif sigmas is not None:
|
| 97 |
-
accept_sigmas = "sigmas" in set(
|
|
|
|
|
|
|
| 98 |
if not accept_sigmas:
|
| 99 |
-
|
| 100 |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 101 |
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
| 102 |
)
|
|
|
|
| 103 |
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
| 104 |
timesteps = scheduler.timesteps
|
| 105 |
num_inference_steps = len(timesteps)
|
|
@@ -108,6 +121,7 @@ def retrieve_timesteps(
|
|
| 108 |
timesteps = scheduler.timesteps
|
| 109 |
return timesteps, num_inference_steps
|
| 110 |
|
|
|
|
| 111 |
class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
| 112 |
model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->text_encoder_4->image_encoder->transformer->vae"
|
| 113 |
_optional_components = ["image_encoder", "feature_extractor"]
|
|
@@ -115,6 +129,7 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
| 115 |
|
| 116 |
def __init__(
|
| 117 |
self,
|
|
|
|
| 118 |
scheduler: FlowMatchEulerDiscreteScheduler,
|
| 119 |
vae: AutoencoderKL,
|
| 120 |
text_encoder: CLIPTextModelWithProjection,
|
|
@@ -129,6 +144,7 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
| 129 |
super().__init__()
|
| 130 |
|
| 131 |
self.register_modules(
|
|
|
|
| 132 |
vae=vae,
|
| 133 |
text_encoder=text_encoder,
|
| 134 |
text_encoder_2=text_encoder_2,
|
|
@@ -141,21 +157,25 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
| 141 |
scheduler=scheduler,
|
| 142 |
)
|
| 143 |
self.vae_scale_factor = (
|
| 144 |
-
2 ** (len(self.vae.config.block_out_channels) - 1)
|
|
|
|
|
|
|
| 145 |
)
|
| 146 |
# HiDreamImage latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
|
| 147 |
# by the patch size. So the vae scale factor is multiplied by the patch size to account for this
|
| 148 |
-
self.image_processor = VaeImageProcessor(
|
|
|
|
|
|
|
| 149 |
self.default_sample_size = 128
|
| 150 |
self.tokenizer_4.pad_token = self.tokenizer_4.eos_token
|
| 151 |
|
| 152 |
def _get_t5_prompt_embeds(
|
| 153 |
self,
|
| 154 |
-
prompt:
|
| 155 |
num_images_per_prompt: int = 1,
|
| 156 |
max_sequence_length: int = 128,
|
| 157 |
-
device:
|
| 158 |
-
dtype:
|
| 159 |
):
|
| 160 |
device = device or self._execution_device
|
| 161 |
dtype = dtype or self.text_encoder_3.dtype
|
|
@@ -173,33 +193,47 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
| 173 |
)
|
| 174 |
text_input_ids = text_inputs.input_ids
|
| 175 |
attention_mask = text_inputs.attention_mask
|
| 176 |
-
untruncated_ids = self.tokenizer_3(
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
logger.warning(
|
| 181 |
"The following part of your input was truncated because `max_sequence_length` is set to "
|
| 182 |
f" {min(max_sequence_length, self.tokenizer_3.model_max_length)} tokens: {removed_text}"
|
| 183 |
)
|
| 184 |
|
| 185 |
-
prompt_embeds = self.text_encoder_3(
|
|
|
|
|
|
|
| 186 |
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
| 187 |
_, seq_len, _ = prompt_embeds.shape
|
| 188 |
|
| 189 |
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
| 190 |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 191 |
-
prompt_embeds = prompt_embeds.view(
|
|
|
|
|
|
|
| 192 |
return prompt_embeds
|
| 193 |
-
|
| 194 |
def _get_clip_prompt_embeds(
|
| 195 |
self,
|
| 196 |
tokenizer,
|
| 197 |
text_encoder,
|
| 198 |
-
prompt:
|
| 199 |
num_images_per_prompt: int = 1,
|
| 200 |
max_sequence_length: int = 128,
|
| 201 |
-
device:
|
| 202 |
-
dtype:
|
| 203 |
):
|
| 204 |
device = device or self._execution_device
|
| 205 |
dtype = dtype or text_encoder.dtype
|
|
@@ -216,14 +250,20 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
| 216 |
)
|
| 217 |
|
| 218 |
text_input_ids = text_inputs.input_ids
|
| 219 |
-
untruncated_ids = tokenizer(
|
| 220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
removed_text = tokenizer.batch_decode(untruncated_ids[:, 218 - 1 : -1])
|
| 222 |
logger.warning(
|
| 223 |
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
| 224 |
f" {218} tokens: {removed_text}"
|
| 225 |
)
|
| 226 |
-
prompt_embeds = text_encoder(
|
|
|
|
|
|
|
| 227 |
|
| 228 |
# Use pooled output of CLIPTextModel
|
| 229 |
prompt_embeds = prompt_embeds[0]
|
|
@@ -234,14 +274,14 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
| 234 |
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
| 235 |
|
| 236 |
return prompt_embeds
|
| 237 |
-
|
| 238 |
def _get_llama3_prompt_embeds(
|
| 239 |
self,
|
| 240 |
-
prompt:
|
| 241 |
num_images_per_prompt: int = 1,
|
| 242 |
max_sequence_length: int = 128,
|
| 243 |
-
device:
|
| 244 |
-
dtype:
|
| 245 |
):
|
| 246 |
device = device or self._execution_device
|
| 247 |
dtype = dtype or self.text_encoder_4.dtype
|
|
@@ -259,20 +299,30 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
| 259 |
)
|
| 260 |
text_input_ids = text_inputs.input_ids
|
| 261 |
attention_mask = text_inputs.attention_mask
|
| 262 |
-
untruncated_ids = self.tokenizer_4(
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
logger.warning(
|
| 267 |
"The following part of your input was truncated because `max_sequence_length` is set to "
|
| 268 |
f" {min(max_sequence_length, self.tokenizer_4.model_max_length)} tokens: {removed_text}"
|
| 269 |
)
|
| 270 |
|
| 271 |
outputs = self.text_encoder_4(
|
| 272 |
-
text_input_ids.to(device),
|
| 273 |
-
attention_mask=attention_mask.to(device),
|
| 274 |
output_hidden_states=True,
|
| 275 |
-
output_attentions=True
|
| 276 |
)
|
| 277 |
|
| 278 |
prompt_embeds = outputs.hidden_states[1:]
|
|
@@ -281,47 +331,46 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
| 281 |
|
| 282 |
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
| 283 |
prompt_embeds = prompt_embeds.repeat(1, 1, num_images_per_prompt, 1)
|
| 284 |
-
prompt_embeds = prompt_embeds.view(
|
|
|
|
|
|
|
| 285 |
return prompt_embeds
|
| 286 |
-
|
| 287 |
def encode_prompt(
|
| 288 |
self,
|
| 289 |
-
prompt:
|
| 290 |
-
prompt_2:
|
| 291 |
-
prompt_3:
|
| 292 |
-
prompt_4:
|
| 293 |
-
device:
|
| 294 |
-
dtype:
|
| 295 |
num_images_per_prompt: int = 1,
|
| 296 |
do_classifier_free_guidance: bool = True,
|
| 297 |
-
negative_prompt:
|
| 298 |
-
negative_prompt_2:
|
| 299 |
-
negative_prompt_3:
|
| 300 |
-
negative_prompt_4:
|
| 301 |
-
prompt_embeds:
|
| 302 |
-
negative_prompt_embeds:
|
| 303 |
-
pooled_prompt_embeds:
|
| 304 |
-
negative_pooled_prompt_embeds:
|
| 305 |
max_sequence_length: int = 128,
|
| 306 |
-
lora_scale:
|
| 307 |
):
|
| 308 |
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 309 |
-
if prompt is not None
|
| 310 |
-
batch_size = len(prompt)
|
| 311 |
-
else:
|
| 312 |
-
batch_size = prompt_embeds.shape[0]
|
| 313 |
|
| 314 |
prompt_embeds, pooled_prompt_embeds = self._encode_prompt(
|
| 315 |
-
prompt
|
| 316 |
-
prompt_2
|
| 317 |
-
prompt_3
|
| 318 |
-
prompt_4
|
| 319 |
-
device
|
| 320 |
-
dtype
|
| 321 |
-
num_images_per_prompt
|
| 322 |
-
prompt_embeds
|
| 323 |
-
pooled_prompt_embeds
|
| 324 |
-
max_sequence_length
|
| 325 |
)
|
| 326 |
|
| 327 |
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
|
@@ -331,58 +380,75 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
| 331 |
negative_prompt_4 = negative_prompt_4 or negative_prompt
|
| 332 |
|
| 333 |
# normalize str to list
|
| 334 |
-
negative_prompt =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 335 |
negative_prompt_2 = (
|
| 336 |
-
batch_size * [negative_prompt_2]
|
|
|
|
|
|
|
| 337 |
)
|
| 338 |
negative_prompt_3 = (
|
| 339 |
-
batch_size * [negative_prompt_3]
|
|
|
|
|
|
|
| 340 |
)
|
| 341 |
negative_prompt_4 = (
|
| 342 |
-
batch_size * [negative_prompt_4]
|
|
|
|
|
|
|
| 343 |
)
|
| 344 |
|
| 345 |
if prompt is not None and type(prompt) is not type(negative_prompt):
|
| 346 |
-
|
| 347 |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
| 348 |
f" {type(prompt)}."
|
| 349 |
)
|
| 350 |
-
|
| 351 |
-
|
|
|
|
| 352 |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
| 353 |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
| 354 |
" the batch size of `prompt`."
|
| 355 |
)
|
| 356 |
-
|
|
|
|
| 357 |
negative_prompt_embeds, negative_pooled_prompt_embeds = self._encode_prompt(
|
| 358 |
-
prompt
|
| 359 |
-
prompt_2
|
| 360 |
-
prompt_3
|
| 361 |
-
prompt_4
|
| 362 |
-
device
|
| 363 |
-
dtype
|
| 364 |
-
num_images_per_prompt
|
| 365 |
-
prompt_embeds
|
| 366 |
-
pooled_prompt_embeds
|
| 367 |
-
max_sequence_length
|
| 368 |
)
|
| 369 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 370 |
|
| 371 |
def _encode_prompt(
|
| 372 |
self,
|
| 373 |
-
prompt:
|
| 374 |
-
prompt_2:
|
| 375 |
-
prompt_3:
|
| 376 |
-
prompt_4:
|
| 377 |
-
device:
|
| 378 |
-
dtype:
|
| 379 |
num_images_per_prompt: int = 1,
|
| 380 |
-
prompt_embeds:
|
| 381 |
-
pooled_prompt_embeds:
|
| 382 |
max_sequence_length: int = 128,
|
| 383 |
):
|
| 384 |
device = device or self._execution_device
|
| 385 |
-
|
| 386 |
if prompt_embeds is None:
|
| 387 |
prompt_2 = prompt_2 or prompt
|
| 388 |
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
|
@@ -396,38 +462,40 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
| 396 |
pooled_prompt_embeds_1 = self._get_clip_prompt_embeds(
|
| 397 |
self.tokenizer,
|
| 398 |
self.text_encoder,
|
| 399 |
-
prompt
|
| 400 |
-
num_images_per_prompt
|
| 401 |
-
max_sequence_length
|
| 402 |
-
device
|
| 403 |
-
dtype
|
| 404 |
)
|
| 405 |
|
| 406 |
pooled_prompt_embeds_2 = self._get_clip_prompt_embeds(
|
| 407 |
self.tokenizer_2,
|
| 408 |
self.text_encoder_2,
|
| 409 |
-
prompt
|
| 410 |
-
num_images_per_prompt
|
| 411 |
-
max_sequence_length
|
| 412 |
-
device
|
| 413 |
-
dtype
|
| 414 |
)
|
| 415 |
|
| 416 |
-
pooled_prompt_embeds = torch.cat(
|
|
|
|
|
|
|
| 417 |
|
| 418 |
t5_prompt_embeds = self._get_t5_prompt_embeds(
|
| 419 |
-
prompt
|
| 420 |
-
num_images_per_prompt
|
| 421 |
-
max_sequence_length
|
| 422 |
-
device
|
| 423 |
-
dtype
|
| 424 |
)
|
| 425 |
llama3_prompt_embeds = self._get_llama3_prompt_embeds(
|
| 426 |
-
prompt
|
| 427 |
-
num_images_per_prompt
|
| 428 |
-
max_sequence_length
|
| 429 |
-
device
|
| 430 |
-
dtype
|
| 431 |
)
|
| 432 |
prompt_embeds = [t5_prompt_embeds, llama3_prompt_embeds]
|
| 433 |
|
|
@@ -481,25 +549,28 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
| 481 |
shape = (batch_size, num_channels_latents, height, width)
|
| 482 |
|
| 483 |
if latents is None:
|
| 484 |
-
latents = randn_tensor(
|
|
|
|
|
|
|
| 485 |
else:
|
| 486 |
if latents.shape != shape:
|
| 487 |
-
|
|
|
|
| 488 |
latents = latents.to(device)
|
| 489 |
return latents
|
| 490 |
-
|
| 491 |
@property
|
| 492 |
def guidance_scale(self):
|
| 493 |
return self._guidance_scale
|
| 494 |
-
|
| 495 |
@property
|
| 496 |
def do_classifier_free_guidance(self):
|
| 497 |
return self._guidance_scale > 1
|
| 498 |
-
|
| 499 |
@property
|
| 500 |
def joint_attention_kwargs(self):
|
| 501 |
return self._joint_attention_kwargs
|
| 502 |
-
|
| 503 |
@property
|
| 504 |
def num_timesteps(self):
|
| 505 |
return self._num_timesteps
|
|
@@ -507,37 +578,39 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
| 507 |
@property
|
| 508 |
def interrupt(self):
|
| 509 |
return self._interrupt
|
| 510 |
-
|
| 511 |
@torch.no_grad()
|
| 512 |
def __call__(
|
| 513 |
self,
|
| 514 |
-
prompt:
|
| 515 |
-
prompt_2:
|
| 516 |
-
prompt_3:
|
| 517 |
-
prompt_4:
|
| 518 |
-
height:
|
| 519 |
-
width:
|
| 520 |
num_inference_steps: int = 50,
|
| 521 |
-
sigmas:
|
| 522 |
guidance_scale: float = 5.0,
|
| 523 |
-
negative_prompt:
|
| 524 |
-
negative_prompt_2:
|
| 525 |
-
negative_prompt_3:
|
| 526 |
-
negative_prompt_4:
|
| 527 |
-
num_images_per_prompt:
|
| 528 |
-
generator:
|
| 529 |
-
latents:
|
| 530 |
-
prompt_embeds:
|
| 531 |
-
negative_prompt_embeds:
|
| 532 |
-
pooled_prompt_embeds:
|
| 533 |
-
negative_pooled_prompt_embeds:
|
| 534 |
-
output_type:
|
| 535 |
return_dict: bool = True,
|
| 536 |
-
joint_attention_kwargs:
|
| 537 |
-
callback_on_step_end:
|
| 538 |
-
callback_on_step_end_tensor_inputs:
|
| 539 |
max_sequence_length: int = 128,
|
| 540 |
):
|
|
|
|
|
|
|
| 541 |
height = height or self.default_sample_size * self.vae_scale_factor
|
| 542 |
width = width or self.default_sample_size * self.vae_scale_factor
|
| 543 |
|
|
@@ -545,7 +618,10 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
| 545 |
S_max = (self.default_sample_size * self.vae_scale_factor) ** 2
|
| 546 |
scale = S_max / (width * height)
|
| 547 |
scale = math.sqrt(scale)
|
| 548 |
-
width, height =
|
|
|
|
|
|
|
|
|
|
| 549 |
|
| 550 |
self._guidance_scale = guidance_scale
|
| 551 |
self._joint_attention_kwargs = joint_attention_kwargs
|
|
@@ -562,7 +638,9 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
| 562 |
device = self._execution_device
|
| 563 |
|
| 564 |
lora_scale = (
|
| 565 |
-
self.joint_attention_kwargs.get("scale", None)
|
|
|
|
|
|
|
| 566 |
)
|
| 567 |
(
|
| 568 |
prompt_embeds,
|
|
@@ -591,13 +669,15 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
| 591 |
|
| 592 |
if self.do_classifier_free_guidance:
|
| 593 |
prompt_embeds_arr = []
|
| 594 |
-
for n, p in zip(negative_prompt_embeds, prompt_embeds):
|
| 595 |
if len(n.shape) == 3:
|
| 596 |
prompt_embeds_arr.append(torch.cat([n, p], dim=0))
|
| 597 |
else:
|
| 598 |
prompt_embeds_arr.append(torch.cat([n, p], dim=1))
|
| 599 |
prompt_embeds = prompt_embeds_arr
|
| 600 |
-
pooled_prompt_embeds = torch.cat(
|
|
|
|
|
|
|
| 601 |
|
| 602 |
# 4. Prepare latent variables
|
| 603 |
num_channels_latents = self.transformer.config.in_channels
|
|
@@ -614,18 +694,21 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
| 614 |
|
| 615 |
if latents.shape[-2] != latents.shape[-1]:
|
| 616 |
B, C, H, W = latents.shape
|
| 617 |
-
pH, pW =
|
|
|
|
|
|
|
|
|
|
| 618 |
|
| 619 |
img_sizes = torch.tensor([pH, pW], dtype=torch.int64).reshape(-1)
|
| 620 |
img_ids = torch.zeros(pH, pW, 3)
|
| 621 |
-
img_ids[..., 1]
|
| 622 |
-
img_ids[..., 2]
|
| 623 |
img_ids = img_ids.reshape(pH * pW, -1)
|
| 624 |
img_ids_pad = torch.zeros(self.transformer.max_seq, 3)
|
| 625 |
-
img_ids_pad[:pH*pW, :] = img_ids
|
| 626 |
|
| 627 |
-
img_sizes = img_sizes.unsqueeze(0).to(latents.device)
|
| 628 |
-
img_ids = img_ids_pad.unsqueeze(0).to(latents.device)
|
| 629 |
if self.do_classifier_free_guidance:
|
| 630 |
img_sizes = img_sizes.repeat(2 * B, 1)
|
| 631 |
img_ids = img_ids.repeat(2 * B, 1, 1)
|
|
@@ -636,7 +719,9 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
| 636 |
mu = calculate_shift(self.transformer.max_seq)
|
| 637 |
scheduler_kwargs = {"mu": mu}
|
| 638 |
if isinstance(self.scheduler, FlowUniPCMultistepScheduler):
|
| 639 |
-
self.scheduler.set_timesteps(
|
|
|
|
|
|
|
| 640 |
timesteps = self.scheduler.timesteps
|
| 641 |
else:
|
| 642 |
timesteps, num_inference_steps = retrieve_timesteps(
|
|
@@ -646,7 +731,9 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
| 646 |
sigmas=sigmas,
|
| 647 |
**scheduler_kwargs,
|
| 648 |
)
|
| 649 |
-
num_warmup_steps = max(
|
|
|
|
|
|
|
| 650 |
self._num_timesteps = len(timesteps)
|
| 651 |
|
| 652 |
# 6. Denoising loop
|
|
@@ -656,7 +743,11 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
| 656 |
continue
|
| 657 |
|
| 658 |
# expand the latents if we are doing classifier free guidance
|
| 659 |
-
latent_model_input =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 660 |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 661 |
timestep = t.expand(latent_model_input.shape[0])
|
| 662 |
|
|
@@ -665,33 +756,42 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
| 665 |
patch_size = self.transformer.config.patch_size
|
| 666 |
pH, pW = H // patch_size, W // patch_size
|
| 667 |
out = torch.zeros(
|
| 668 |
-
(B, C, self.transformer.max_seq, patch_size * patch_size),
|
| 669 |
-
dtype=latent_model_input.dtype,
|
| 670 |
-
device=latent_model_input.device
|
| 671 |
)
|
| 672 |
-
latent_model_input = einops.rearrange(
|
| 673 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 674 |
latent_model_input = out
|
| 675 |
|
| 676 |
noise_pred = self.transformer(
|
| 677 |
-
hidden_states
|
| 678 |
-
timesteps
|
| 679 |
-
encoder_hidden_states
|
| 680 |
-
pooled_embeds
|
| 681 |
-
img_sizes
|
| 682 |
-
img_ids
|
| 683 |
-
return_dict
|
| 684 |
)[0]
|
| 685 |
noise_pred = -noise_pred
|
| 686 |
|
| 687 |
# perform guidance
|
| 688 |
if self.do_classifier_free_guidance:
|
| 689 |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 690 |
-
noise_pred = noise_pred_uncond + self.guidance_scale * (
|
|
|
|
|
|
|
| 691 |
|
| 692 |
# compute the previous noisy sample x_t -> x_t-1
|
| 693 |
latents_dtype = latents.dtype
|
| 694 |
-
latents = self.scheduler.step(
|
|
|
|
|
|
|
| 695 |
|
| 696 |
if latents.dtype != latents_dtype:
|
| 697 |
if torch.backends.mps.is_available():
|
|
@@ -706,10 +806,14 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
| 706 |
|
| 707 |
latents = callback_outputs.pop("latents", latents)
|
| 708 |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
| 709 |
-
negative_prompt_embeds = callback_outputs.pop(
|
|
|
|
|
|
|
| 710 |
|
| 711 |
# call the callback, if provided
|
| 712 |
-
if i == len(timesteps) - 1 or (
|
|
|
|
|
|
|
| 713 |
progress_bar.update()
|
| 714 |
|
| 715 |
if XLA_AVAILABLE:
|
|
@@ -719,7 +823,9 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
| 719 |
image = latents
|
| 720 |
|
| 721 |
else:
|
| 722 |
-
latents = (
|
|
|
|
|
|
|
| 723 |
|
| 724 |
image = self.vae.decode(latents, return_dict=False)[0]
|
| 725 |
image = self.image_processor.postprocess(image, output_type=output_type)
|
|
@@ -730,4 +836,4 @@ class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
|
| 730 |
if not return_dict:
|
| 731 |
return (image,)
|
| 732 |
|
| 733 |
-
return HiDreamImagePipelineOutput(images=image)
|
|
|
|
| 1 |
import inspect
|
|
|
|
| 2 |
import math
|
| 3 |
+
from collections.abc import Callable
|
| 4 |
+
from typing import Any
|
| 5 |
+
|
| 6 |
import einops
|
| 7 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
from diffusers.image_processor import VaeImageProcessor
|
| 9 |
from diffusers.loaders import FromSingleFileMixin
|
| 10 |
from diffusers.models.autoencoders import AutoencoderKL
|
| 11 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
| 12 |
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
| 13 |
from diffusers.utils import (
|
|
|
|
| 14 |
is_torch_xla_available,
|
| 15 |
logging,
|
| 16 |
)
|
| 17 |
from diffusers.utils.torch_utils import randn_tensor
|
| 18 |
+
from transformers import (
|
| 19 |
+
CLIPTextModelWithProjection,
|
| 20 |
+
CLIPTokenizer,
|
| 21 |
+
LlamaForCausalLM,
|
| 22 |
+
PreTrainedTokenizerFast,
|
| 23 |
+
T5EncoderModel,
|
| 24 |
+
T5Tokenizer,
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
from ...models.transformers.transformer_hidream_image import (
|
| 28 |
+
HiDreamImageTransformer2DModel,
|
| 29 |
+
)
|
| 30 |
from ...schedulers.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
| 31 |
+
from .pipeline_output import HiDreamImagePipelineOutput
|
| 32 |
|
| 33 |
if is_torch_xla_available():
|
| 34 |
import torch_xla.core.xla_model as xm
|
|
|
|
| 39 |
|
| 40 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 41 |
|
| 42 |
+
|
| 43 |
# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
|
| 44 |
def calculate_shift(
|
| 45 |
image_seq_len,
|
|
|
|
| 53 |
mu = image_seq_len * m + b
|
| 54 |
return mu
|
| 55 |
|
| 56 |
+
|
| 57 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
| 58 |
def retrieve_timesteps(
|
| 59 |
scheduler,
|
| 60 |
+
num_inference_steps: int | None = None,
|
| 61 |
+
device: str | torch.device | None = None,
|
| 62 |
+
timesteps: list[int] | None = None,
|
| 63 |
+
sigmas: list[float] | None = None,
|
| 64 |
**kwargs,
|
| 65 |
):
|
| 66 |
r"""
|
|
|
|
| 85 |
Returns:
|
| 86 |
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
| 87 |
second element is the number of inference steps.
|
| 88 |
+
|
| 89 |
"""
|
| 90 |
if timesteps is not None and sigmas is not None:
|
| 91 |
+
msg = "Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
|
| 92 |
+
raise ValueError(msg)
|
| 93 |
if timesteps is not None:
|
| 94 |
+
accepts_timesteps = "timesteps" in set(
|
| 95 |
+
inspect.signature(scheduler.set_timesteps).parameters.keys()
|
| 96 |
+
)
|
| 97 |
if not accepts_timesteps:
|
| 98 |
+
msg = (
|
| 99 |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 100 |
f" timestep schedules. Please check whether you are using the correct scheduler."
|
| 101 |
)
|
| 102 |
+
raise ValueError(msg)
|
| 103 |
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
| 104 |
timesteps = scheduler.timesteps
|
| 105 |
num_inference_steps = len(timesteps)
|
| 106 |
elif sigmas is not None:
|
| 107 |
+
accept_sigmas = "sigmas" in set(
|
| 108 |
+
inspect.signature(scheduler.set_timesteps).parameters.keys()
|
| 109 |
+
)
|
| 110 |
if not accept_sigmas:
|
| 111 |
+
msg = (
|
| 112 |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 113 |
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
| 114 |
)
|
| 115 |
+
raise ValueError(msg)
|
| 116 |
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
| 117 |
timesteps = scheduler.timesteps
|
| 118 |
num_inference_steps = len(timesteps)
|
|
|
|
| 121 |
timesteps = scheduler.timesteps
|
| 122 |
return timesteps, num_inference_steps
|
| 123 |
|
| 124 |
+
|
| 125 |
class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
| 126 |
model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->text_encoder_4->image_encoder->transformer->vae"
|
| 127 |
_optional_components = ["image_encoder", "feature_extractor"]
|
|
|
|
| 129 |
|
| 130 |
def __init__(
|
| 131 |
self,
|
| 132 |
+
transformer: HiDreamImageTransformer2DModel,
|
| 133 |
scheduler: FlowMatchEulerDiscreteScheduler,
|
| 134 |
vae: AutoencoderKL,
|
| 135 |
text_encoder: CLIPTextModelWithProjection,
|
|
|
|
| 144 |
super().__init__()
|
| 145 |
|
| 146 |
self.register_modules(
|
| 147 |
+
transformer=transformer,
|
| 148 |
vae=vae,
|
| 149 |
text_encoder=text_encoder,
|
| 150 |
text_encoder_2=text_encoder_2,
|
|
|
|
| 157 |
scheduler=scheduler,
|
| 158 |
)
|
| 159 |
self.vae_scale_factor = (
|
| 160 |
+
2 ** (len(self.vae.config.block_out_channels) - 1)
|
| 161 |
+
if hasattr(self, "vae") and self.vae is not None
|
| 162 |
+
else 8
|
| 163 |
)
|
| 164 |
# HiDreamImage latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
|
| 165 |
# by the patch size. So the vae scale factor is multiplied by the patch size to account for this
|
| 166 |
+
self.image_processor = VaeImageProcessor(
|
| 167 |
+
vae_scale_factor=self.vae_scale_factor * 2
|
| 168 |
+
)
|
| 169 |
self.default_sample_size = 128
|
| 170 |
self.tokenizer_4.pad_token = self.tokenizer_4.eos_token
|
| 171 |
|
| 172 |
def _get_t5_prompt_embeds(
|
| 173 |
self,
|
| 174 |
+
prompt: str | list[str] | None = None,
|
| 175 |
num_images_per_prompt: int = 1,
|
| 176 |
max_sequence_length: int = 128,
|
| 177 |
+
device: torch.device | None = None,
|
| 178 |
+
dtype: torch.dtype | None = None,
|
| 179 |
):
|
| 180 |
device = device or self._execution_device
|
| 181 |
dtype = dtype or self.text_encoder_3.dtype
|
|
|
|
| 193 |
)
|
| 194 |
text_input_ids = text_inputs.input_ids
|
| 195 |
attention_mask = text_inputs.attention_mask
|
| 196 |
+
untruncated_ids = self.tokenizer_3(
|
| 197 |
+
prompt, padding="longest", return_tensors="pt"
|
| 198 |
+
).input_ids
|
| 199 |
+
|
| 200 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
| 201 |
+
text_input_ids, untruncated_ids
|
| 202 |
+
):
|
| 203 |
+
removed_text = self.tokenizer_3.batch_decode(
|
| 204 |
+
untruncated_ids[
|
| 205 |
+
:,
|
| 206 |
+
min(max_sequence_length, self.tokenizer_3.model_max_length)
|
| 207 |
+
- 1 : -1,
|
| 208 |
+
]
|
| 209 |
+
)
|
| 210 |
logger.warning(
|
| 211 |
"The following part of your input was truncated because `max_sequence_length` is set to "
|
| 212 |
f" {min(max_sequence_length, self.tokenizer_3.model_max_length)} tokens: {removed_text}"
|
| 213 |
)
|
| 214 |
|
| 215 |
+
prompt_embeds = self.text_encoder_3(
|
| 216 |
+
text_input_ids.to(device), attention_mask=attention_mask.to(device)
|
| 217 |
+
)[0]
|
| 218 |
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
| 219 |
_, seq_len, _ = prompt_embeds.shape
|
| 220 |
|
| 221 |
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
| 222 |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 223 |
+
prompt_embeds = prompt_embeds.view(
|
| 224 |
+
batch_size * num_images_per_prompt, seq_len, -1
|
| 225 |
+
)
|
| 226 |
return prompt_embeds
|
| 227 |
+
|
| 228 |
def _get_clip_prompt_embeds(
|
| 229 |
self,
|
| 230 |
tokenizer,
|
| 231 |
text_encoder,
|
| 232 |
+
prompt: str | list[str],
|
| 233 |
num_images_per_prompt: int = 1,
|
| 234 |
max_sequence_length: int = 128,
|
| 235 |
+
device: torch.device | None = None,
|
| 236 |
+
dtype: torch.dtype | None = None,
|
| 237 |
):
|
| 238 |
device = device or self._execution_device
|
| 239 |
dtype = dtype or text_encoder.dtype
|
|
|
|
| 250 |
)
|
| 251 |
|
| 252 |
text_input_ids = text_inputs.input_ids
|
| 253 |
+
untruncated_ids = tokenizer(
|
| 254 |
+
prompt, padding="longest", return_tensors="pt"
|
| 255 |
+
).input_ids
|
| 256 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
| 257 |
+
text_input_ids, untruncated_ids
|
| 258 |
+
):
|
| 259 |
removed_text = tokenizer.batch_decode(untruncated_ids[:, 218 - 1 : -1])
|
| 260 |
logger.warning(
|
| 261 |
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
| 262 |
f" {218} tokens: {removed_text}"
|
| 263 |
)
|
| 264 |
+
prompt_embeds = text_encoder(
|
| 265 |
+
text_input_ids.to(device), output_hidden_states=True
|
| 266 |
+
)
|
| 267 |
|
| 268 |
# Use pooled output of CLIPTextModel
|
| 269 |
prompt_embeds = prompt_embeds[0]
|
|
|
|
| 274 |
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
| 275 |
|
| 276 |
return prompt_embeds
|
| 277 |
+
|
| 278 |
def _get_llama3_prompt_embeds(
|
| 279 |
self,
|
| 280 |
+
prompt: str | list[str] | None = None,
|
| 281 |
num_images_per_prompt: int = 1,
|
| 282 |
max_sequence_length: int = 128,
|
| 283 |
+
device: torch.device | None = None,
|
| 284 |
+
dtype: torch.dtype | None = None,
|
| 285 |
):
|
| 286 |
device = device or self._execution_device
|
| 287 |
dtype = dtype or self.text_encoder_4.dtype
|
|
|
|
| 299 |
)
|
| 300 |
text_input_ids = text_inputs.input_ids
|
| 301 |
attention_mask = text_inputs.attention_mask
|
| 302 |
+
untruncated_ids = self.tokenizer_4(
|
| 303 |
+
prompt, padding="longest", return_tensors="pt"
|
| 304 |
+
).input_ids
|
| 305 |
+
|
| 306 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
| 307 |
+
text_input_ids, untruncated_ids
|
| 308 |
+
):
|
| 309 |
+
removed_text = self.tokenizer_4.batch_decode(
|
| 310 |
+
untruncated_ids[
|
| 311 |
+
:,
|
| 312 |
+
min(max_sequence_length, self.tokenizer_4.model_max_length)
|
| 313 |
+
- 1 : -1,
|
| 314 |
+
]
|
| 315 |
+
)
|
| 316 |
logger.warning(
|
| 317 |
"The following part of your input was truncated because `max_sequence_length` is set to "
|
| 318 |
f" {min(max_sequence_length, self.tokenizer_4.model_max_length)} tokens: {removed_text}"
|
| 319 |
)
|
| 320 |
|
| 321 |
outputs = self.text_encoder_4(
|
| 322 |
+
text_input_ids.to(device),
|
| 323 |
+
attention_mask=attention_mask.to(device),
|
| 324 |
output_hidden_states=True,
|
| 325 |
+
output_attentions=True,
|
| 326 |
)
|
| 327 |
|
| 328 |
prompt_embeds = outputs.hidden_states[1:]
|
|
|
|
| 331 |
|
| 332 |
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
| 333 |
prompt_embeds = prompt_embeds.repeat(1, 1, num_images_per_prompt, 1)
|
| 334 |
+
prompt_embeds = prompt_embeds.view(
|
| 335 |
+
-1, batch_size * num_images_per_prompt, seq_len, dim
|
| 336 |
+
)
|
| 337 |
return prompt_embeds
|
| 338 |
+
|
| 339 |
def encode_prompt(
|
| 340 |
self,
|
| 341 |
+
prompt: str | list[str],
|
| 342 |
+
prompt_2: str | list[str],
|
| 343 |
+
prompt_3: str | list[str],
|
| 344 |
+
prompt_4: str | list[str],
|
| 345 |
+
device: torch.device | None = None,
|
| 346 |
+
dtype: torch.dtype | None = None,
|
| 347 |
num_images_per_prompt: int = 1,
|
| 348 |
do_classifier_free_guidance: bool = True,
|
| 349 |
+
negative_prompt: str | list[str] | None = None,
|
| 350 |
+
negative_prompt_2: str | list[str] | None = None,
|
| 351 |
+
negative_prompt_3: str | list[str] | None = None,
|
| 352 |
+
negative_prompt_4: str | list[str] | None = None,
|
| 353 |
+
prompt_embeds: list[torch.FloatTensor] | None = None,
|
| 354 |
+
negative_prompt_embeds: torch.FloatTensor | None = None,
|
| 355 |
+
pooled_prompt_embeds: torch.FloatTensor | None = None,
|
| 356 |
+
negative_pooled_prompt_embeds: torch.FloatTensor | None = None,
|
| 357 |
max_sequence_length: int = 128,
|
| 358 |
+
lora_scale: float | None = None,
|
| 359 |
):
|
| 360 |
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 361 |
+
batch_size = len(prompt) if prompt is not None else prompt_embeds.shape[0]
|
|
|
|
|
|
|
|
|
|
| 362 |
|
| 363 |
prompt_embeds, pooled_prompt_embeds = self._encode_prompt(
|
| 364 |
+
prompt=prompt,
|
| 365 |
+
prompt_2=prompt_2,
|
| 366 |
+
prompt_3=prompt_3,
|
| 367 |
+
prompt_4=prompt_4,
|
| 368 |
+
device=device,
|
| 369 |
+
dtype=dtype,
|
| 370 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 371 |
+
prompt_embeds=prompt_embeds,
|
| 372 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 373 |
+
max_sequence_length=max_sequence_length,
|
| 374 |
)
|
| 375 |
|
| 376 |
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
|
|
|
| 380 |
negative_prompt_4 = negative_prompt_4 or negative_prompt
|
| 381 |
|
| 382 |
# normalize str to list
|
| 383 |
+
negative_prompt = (
|
| 384 |
+
batch_size * [negative_prompt]
|
| 385 |
+
if isinstance(negative_prompt, str)
|
| 386 |
+
else negative_prompt
|
| 387 |
+
)
|
| 388 |
negative_prompt_2 = (
|
| 389 |
+
batch_size * [negative_prompt_2]
|
| 390 |
+
if isinstance(negative_prompt_2, str)
|
| 391 |
+
else negative_prompt_2
|
| 392 |
)
|
| 393 |
negative_prompt_3 = (
|
| 394 |
+
batch_size * [negative_prompt_3]
|
| 395 |
+
if isinstance(negative_prompt_3, str)
|
| 396 |
+
else negative_prompt_3
|
| 397 |
)
|
| 398 |
negative_prompt_4 = (
|
| 399 |
+
batch_size * [negative_prompt_4]
|
| 400 |
+
if isinstance(negative_prompt_4, str)
|
| 401 |
+
else negative_prompt_4
|
| 402 |
)
|
| 403 |
|
| 404 |
if prompt is not None and type(prompt) is not type(negative_prompt):
|
| 405 |
+
msg = (
|
| 406 |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
| 407 |
f" {type(prompt)}."
|
| 408 |
)
|
| 409 |
+
raise TypeError(msg)
|
| 410 |
+
if batch_size != len(negative_prompt):
|
| 411 |
+
msg = (
|
| 412 |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
| 413 |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
| 414 |
" the batch size of `prompt`."
|
| 415 |
)
|
| 416 |
+
raise ValueError(msg)
|
| 417 |
+
|
| 418 |
negative_prompt_embeds, negative_pooled_prompt_embeds = self._encode_prompt(
|
| 419 |
+
prompt=negative_prompt,
|
| 420 |
+
prompt_2=negative_prompt_2,
|
| 421 |
+
prompt_3=negative_prompt_3,
|
| 422 |
+
prompt_4=negative_prompt_4,
|
| 423 |
+
device=device,
|
| 424 |
+
dtype=dtype,
|
| 425 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 426 |
+
prompt_embeds=negative_prompt_embeds,
|
| 427 |
+
pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 428 |
+
max_sequence_length=max_sequence_length,
|
| 429 |
)
|
| 430 |
+
return (
|
| 431 |
+
prompt_embeds,
|
| 432 |
+
negative_prompt_embeds,
|
| 433 |
+
pooled_prompt_embeds,
|
| 434 |
+
negative_pooled_prompt_embeds,
|
| 435 |
+
)
|
| 436 |
|
| 437 |
def _encode_prompt(
|
| 438 |
self,
|
| 439 |
+
prompt: str | list[str],
|
| 440 |
+
prompt_2: str | list[str],
|
| 441 |
+
prompt_3: str | list[str],
|
| 442 |
+
prompt_4: str | list[str],
|
| 443 |
+
device: torch.device | None = None,
|
| 444 |
+
dtype: torch.dtype | None = None,
|
| 445 |
num_images_per_prompt: int = 1,
|
| 446 |
+
prompt_embeds: list[torch.FloatTensor] | None = None,
|
| 447 |
+
pooled_prompt_embeds: torch.FloatTensor | None = None,
|
| 448 |
max_sequence_length: int = 128,
|
| 449 |
):
|
| 450 |
device = device or self._execution_device
|
| 451 |
+
|
| 452 |
if prompt_embeds is None:
|
| 453 |
prompt_2 = prompt_2 or prompt
|
| 454 |
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
|
|
|
| 462 |
pooled_prompt_embeds_1 = self._get_clip_prompt_embeds(
|
| 463 |
self.tokenizer,
|
| 464 |
self.text_encoder,
|
| 465 |
+
prompt=prompt,
|
| 466 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 467 |
+
max_sequence_length=max_sequence_length,
|
| 468 |
+
device=device,
|
| 469 |
+
dtype=dtype,
|
| 470 |
)
|
| 471 |
|
| 472 |
pooled_prompt_embeds_2 = self._get_clip_prompt_embeds(
|
| 473 |
self.tokenizer_2,
|
| 474 |
self.text_encoder_2,
|
| 475 |
+
prompt=prompt_2,
|
| 476 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 477 |
+
max_sequence_length=max_sequence_length,
|
| 478 |
+
device=device,
|
| 479 |
+
dtype=dtype,
|
| 480 |
)
|
| 481 |
|
| 482 |
+
pooled_prompt_embeds = torch.cat(
|
| 483 |
+
[pooled_prompt_embeds_1, pooled_prompt_embeds_2], dim=-1
|
| 484 |
+
)
|
| 485 |
|
| 486 |
t5_prompt_embeds = self._get_t5_prompt_embeds(
|
| 487 |
+
prompt=prompt_3,
|
| 488 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 489 |
+
max_sequence_length=max_sequence_length,
|
| 490 |
+
device=device,
|
| 491 |
+
dtype=dtype,
|
| 492 |
)
|
| 493 |
llama3_prompt_embeds = self._get_llama3_prompt_embeds(
|
| 494 |
+
prompt=prompt_4,
|
| 495 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 496 |
+
max_sequence_length=max_sequence_length,
|
| 497 |
+
device=device,
|
| 498 |
+
dtype=dtype,
|
| 499 |
)
|
| 500 |
prompt_embeds = [t5_prompt_embeds, llama3_prompt_embeds]
|
| 501 |
|
|
|
|
| 549 |
shape = (batch_size, num_channels_latents, height, width)
|
| 550 |
|
| 551 |
if latents is None:
|
| 552 |
+
latents = randn_tensor(
|
| 553 |
+
shape, generator=generator, device=device, dtype=dtype
|
| 554 |
+
)
|
| 555 |
else:
|
| 556 |
if latents.shape != shape:
|
| 557 |
+
msg = f"Unexpected latents shape, got {latents.shape}, expected {shape}"
|
| 558 |
+
raise ValueError(msg)
|
| 559 |
latents = latents.to(device)
|
| 560 |
return latents
|
| 561 |
+
|
| 562 |
@property
|
| 563 |
def guidance_scale(self):
|
| 564 |
return self._guidance_scale
|
| 565 |
+
|
| 566 |
@property
|
| 567 |
def do_classifier_free_guidance(self):
|
| 568 |
return self._guidance_scale > 1
|
| 569 |
+
|
| 570 |
@property
|
| 571 |
def joint_attention_kwargs(self):
|
| 572 |
return self._joint_attention_kwargs
|
| 573 |
+
|
| 574 |
@property
|
| 575 |
def num_timesteps(self):
|
| 576 |
return self._num_timesteps
|
|
|
|
| 578 |
@property
|
| 579 |
def interrupt(self):
|
| 580 |
return self._interrupt
|
| 581 |
+
|
| 582 |
@torch.no_grad()
|
| 583 |
def __call__(
|
| 584 |
self,
|
| 585 |
+
prompt: str | list[str] | None = None,
|
| 586 |
+
prompt_2: str | list[str] | None = None,
|
| 587 |
+
prompt_3: str | list[str] | None = None,
|
| 588 |
+
prompt_4: str | list[str] | None = None,
|
| 589 |
+
height: int | None = None,
|
| 590 |
+
width: int | None = None,
|
| 591 |
num_inference_steps: int = 50,
|
| 592 |
+
sigmas: list[float] | None = None,
|
| 593 |
guidance_scale: float = 5.0,
|
| 594 |
+
negative_prompt: str | list[str] | None = None,
|
| 595 |
+
negative_prompt_2: str | list[str] | None = None,
|
| 596 |
+
negative_prompt_3: str | list[str] | None = None,
|
| 597 |
+
negative_prompt_4: str | list[str] | None = None,
|
| 598 |
+
num_images_per_prompt: int | None = 1,
|
| 599 |
+
generator: torch.Generator | list[torch.Generator] | None = None,
|
| 600 |
+
latents: torch.FloatTensor | None = None,
|
| 601 |
+
prompt_embeds: torch.FloatTensor | None = None,
|
| 602 |
+
negative_prompt_embeds: torch.FloatTensor | None = None,
|
| 603 |
+
pooled_prompt_embeds: torch.FloatTensor | None = None,
|
| 604 |
+
negative_pooled_prompt_embeds: torch.FloatTensor | None = None,
|
| 605 |
+
output_type: str | None = "pil",
|
| 606 |
return_dict: bool = True,
|
| 607 |
+
joint_attention_kwargs: dict[str, Any] | None = None,
|
| 608 |
+
callback_on_step_end: Callable[[int, int, dict], None] | None = None,
|
| 609 |
+
callback_on_step_end_tensor_inputs: list[str] | None = None,
|
| 610 |
max_sequence_length: int = 128,
|
| 611 |
):
|
| 612 |
+
if callback_on_step_end_tensor_inputs is None:
|
| 613 |
+
callback_on_step_end_tensor_inputs = ["latents"]
|
| 614 |
height = height or self.default_sample_size * self.vae_scale_factor
|
| 615 |
width = width or self.default_sample_size * self.vae_scale_factor
|
| 616 |
|
|
|
|
| 618 |
S_max = (self.default_sample_size * self.vae_scale_factor) ** 2
|
| 619 |
scale = S_max / (width * height)
|
| 620 |
scale = math.sqrt(scale)
|
| 621 |
+
width, height = (
|
| 622 |
+
int(width * scale // division * division),
|
| 623 |
+
int(height * scale // division * division),
|
| 624 |
+
)
|
| 625 |
|
| 626 |
self._guidance_scale = guidance_scale
|
| 627 |
self._joint_attention_kwargs = joint_attention_kwargs
|
|
|
|
| 638 |
device = self._execution_device
|
| 639 |
|
| 640 |
lora_scale = (
|
| 641 |
+
self.joint_attention_kwargs.get("scale", None)
|
| 642 |
+
if self.joint_attention_kwargs is not None
|
| 643 |
+
else None
|
| 644 |
)
|
| 645 |
(
|
| 646 |
prompt_embeds,
|
|
|
|
| 669 |
|
| 670 |
if self.do_classifier_free_guidance:
|
| 671 |
prompt_embeds_arr = []
|
| 672 |
+
for n, p in zip(negative_prompt_embeds, prompt_embeds, strict=False):
|
| 673 |
if len(n.shape) == 3:
|
| 674 |
prompt_embeds_arr.append(torch.cat([n, p], dim=0))
|
| 675 |
else:
|
| 676 |
prompt_embeds_arr.append(torch.cat([n, p], dim=1))
|
| 677 |
prompt_embeds = prompt_embeds_arr
|
| 678 |
+
pooled_prompt_embeds = torch.cat(
|
| 679 |
+
[negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0
|
| 680 |
+
)
|
| 681 |
|
| 682 |
# 4. Prepare latent variables
|
| 683 |
num_channels_latents = self.transformer.config.in_channels
|
|
|
|
| 694 |
|
| 695 |
if latents.shape[-2] != latents.shape[-1]:
|
| 696 |
B, C, H, W = latents.shape
|
| 697 |
+
pH, pW = (
|
| 698 |
+
H // self.transformer.config.patch_size,
|
| 699 |
+
W // self.transformer.config.patch_size,
|
| 700 |
+
)
|
| 701 |
|
| 702 |
img_sizes = torch.tensor([pH, pW], dtype=torch.int64).reshape(-1)
|
| 703 |
img_ids = torch.zeros(pH, pW, 3)
|
| 704 |
+
img_ids[..., 1] += torch.arange(pH)[:, None]
|
| 705 |
+
img_ids[..., 2] += torch.arange(pW)[None, :]
|
| 706 |
img_ids = img_ids.reshape(pH * pW, -1)
|
| 707 |
img_ids_pad = torch.zeros(self.transformer.max_seq, 3)
|
| 708 |
+
img_ids_pad[: pH * pW, :] = img_ids
|
| 709 |
|
| 710 |
+
img_sizes = img_sizes.unsqueeze(0).to(latents.device)
|
| 711 |
+
img_ids = img_ids_pad.unsqueeze(0).to(latents.device)
|
| 712 |
if self.do_classifier_free_guidance:
|
| 713 |
img_sizes = img_sizes.repeat(2 * B, 1)
|
| 714 |
img_ids = img_ids.repeat(2 * B, 1, 1)
|
|
|
|
| 719 |
mu = calculate_shift(self.transformer.max_seq)
|
| 720 |
scheduler_kwargs = {"mu": mu}
|
| 721 |
if isinstance(self.scheduler, FlowUniPCMultistepScheduler):
|
| 722 |
+
self.scheduler.set_timesteps(
|
| 723 |
+
num_inference_steps, device=device, shift=math.exp(mu)
|
| 724 |
+
)
|
| 725 |
timesteps = self.scheduler.timesteps
|
| 726 |
else:
|
| 727 |
timesteps, num_inference_steps = retrieve_timesteps(
|
|
|
|
| 731 |
sigmas=sigmas,
|
| 732 |
**scheduler_kwargs,
|
| 733 |
)
|
| 734 |
+
num_warmup_steps = max(
|
| 735 |
+
len(timesteps) - num_inference_steps * self.scheduler.order, 0
|
| 736 |
+
)
|
| 737 |
self._num_timesteps = len(timesteps)
|
| 738 |
|
| 739 |
# 6. Denoising loop
|
|
|
|
| 743 |
continue
|
| 744 |
|
| 745 |
# expand the latents if we are doing classifier free guidance
|
| 746 |
+
latent_model_input = (
|
| 747 |
+
torch.cat([latents] * 2)
|
| 748 |
+
if self.do_classifier_free_guidance
|
| 749 |
+
else latents
|
| 750 |
+
)
|
| 751 |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 752 |
timestep = t.expand(latent_model_input.shape[0])
|
| 753 |
|
|
|
|
| 756 |
patch_size = self.transformer.config.patch_size
|
| 757 |
pH, pW = H // patch_size, W // patch_size
|
| 758 |
out = torch.zeros(
|
| 759 |
+
(B, C, self.transformer.max_seq, patch_size * patch_size),
|
| 760 |
+
dtype=latent_model_input.dtype,
|
| 761 |
+
device=latent_model_input.device,
|
| 762 |
)
|
| 763 |
+
latent_model_input = einops.rearrange(
|
| 764 |
+
latent_model_input,
|
| 765 |
+
"B C (H p1) (W p2) -> B C (H W) (p1 p2)",
|
| 766 |
+
p1=patch_size,
|
| 767 |
+
p2=patch_size,
|
| 768 |
+
)
|
| 769 |
+
out[:, :, 0 : pH * pW] = latent_model_input
|
| 770 |
latent_model_input = out
|
| 771 |
|
| 772 |
noise_pred = self.transformer(
|
| 773 |
+
hidden_states=latent_model_input,
|
| 774 |
+
timesteps=timestep,
|
| 775 |
+
encoder_hidden_states=prompt_embeds,
|
| 776 |
+
pooled_embeds=pooled_prompt_embeds,
|
| 777 |
+
img_sizes=img_sizes,
|
| 778 |
+
img_ids=img_ids,
|
| 779 |
+
return_dict=False,
|
| 780 |
)[0]
|
| 781 |
noise_pred = -noise_pred
|
| 782 |
|
| 783 |
# perform guidance
|
| 784 |
if self.do_classifier_free_guidance:
|
| 785 |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 786 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (
|
| 787 |
+
noise_pred_text - noise_pred_uncond
|
| 788 |
+
)
|
| 789 |
|
| 790 |
# compute the previous noisy sample x_t -> x_t-1
|
| 791 |
latents_dtype = latents.dtype
|
| 792 |
+
latents = self.scheduler.step(
|
| 793 |
+
noise_pred, t, latents, return_dict=False
|
| 794 |
+
)[0]
|
| 795 |
|
| 796 |
if latents.dtype != latents_dtype:
|
| 797 |
if torch.backends.mps.is_available():
|
|
|
|
| 806 |
|
| 807 |
latents = callback_outputs.pop("latents", latents)
|
| 808 |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
| 809 |
+
negative_prompt_embeds = callback_outputs.pop(
|
| 810 |
+
"negative_prompt_embeds", negative_prompt_embeds
|
| 811 |
+
)
|
| 812 |
|
| 813 |
# call the callback, if provided
|
| 814 |
+
if i == len(timesteps) - 1 or (
|
| 815 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
| 816 |
+
):
|
| 817 |
progress_bar.update()
|
| 818 |
|
| 819 |
if XLA_AVAILABLE:
|
|
|
|
| 823 |
image = latents
|
| 824 |
|
| 825 |
else:
|
| 826 |
+
latents = (
|
| 827 |
+
latents / self.vae.config.scaling_factor
|
| 828 |
+
) + self.vae.config.shift_factor
|
| 829 |
|
| 830 |
image = self.vae.decode(latents, return_dict=False)[0]
|
| 831 |
image = self.image_processor.postprocess(image, output_type=output_type)
|
|
|
|
| 836 |
if not return_dict:
|
| 837 |
return (image,)
|
| 838 |
|
| 839 |
+
return HiDreamImagePipelineOutput(images=image)
|