File size: 10,817 Bytes
3ed0796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import gradio as gr
import spaces  # type: ignore - ZeroGPU spaces library
import numpy as np
import random
import torch
import functools
from pathlib import Path
from PIL import Image
from omegaconf import OmegaConf  # type: ignore - YAML configuration library
from tim.schedulers.transition import TransitionSchedule
from tim.utils.misc_utils import instantiate_from_config, init_from_ckpt
from tim.models.vae import get_sd_vae, get_dc_ae, sd_vae_decode, dc_ae_decode
from tim.models.utils.text_encoders import load_text_encoder, encode_prompt
# from kernels import get_kernel

# Configuration
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

# Global variables to store loaded components
model = None
scheduler = None
decode_func = None
config = None
text_encoder = None
tokenizer = None


def load_model_components(device: str = "cuda"):
    """Load all model components once at startup"""
    global model, scheduler, decode_func, config, text_encoder, tokenizer

    try:
        # Load configuration
        config_path = "configs/t2i/tim_xl_p1_t2i.yaml"
        from huggingface_hub import hf_hub_download

        ckpt_path = hf_hub_download(
            repo_id="blanchon/TiM-checkpoints", filename="t2i_model.bin"
        )

        if not Path(config_path).exists():
            raise FileNotFoundError(f"Config file not found: {config_path}")
        if not Path(ckpt_path).exists():
            raise FileNotFoundError(f"Checkpoint file not found: {ckpt_path}")

        print("Loading configuration...")
        config = OmegaConf.load(config_path)
        model_config = config.model

        print("Loading VAE...")
        # Load VAE
        if "dc-ae" in model_config.vae_dir:
            dc_ae = get_dc_ae(model_config.vae_dir, dtype=torch.float32, device=device)
            dc_ae.enable_tiling(2560, 2560, 2560, 2560)
            decode_func = functools.partial(dc_ae_decode, dc_ae, slice_vae=True)
        elif "sd-vae" in model_config.vae_dir:
            sd_vae = get_sd_vae(
                model_config.vae_dir, dtype=torch.float32, device=device
            )
            decode_func = functools.partial(sd_vae_decode, sd_vae, slice_vae=True)
        else:
            raise ValueError("Unsupported VAE type")

        # Load text encoder
        text_encoder, tokenizer = load_text_encoder(
            text_encoder_dir=config.model.text_encoder_dir,
            device=device,
            weight_dtype=dtype,
        )

        print("Loading main model...")
        # Load main model
        model = instantiate_from_config(model_config.network).to(
            device=device, dtype=dtype
        )
        init_from_ckpt(model, checkpoint_dir=ckpt_path, ignore_keys=None, verbose=True)
        model.eval()

        print("Loading scheduler...")
        # Load scheduler
        transport = instantiate_from_config(model_config.transport)
        scheduler = TransitionSchedule(
            transport=transport, **OmegaConf.to_container(model_config.transition_loss)
        )

        print("All components loaded successfully!")

    except Exception as e:
        print(f"Error loading model components: {e}")
        raise e


@spaces.GPU(duration=60)
def generate_image(
    prompt,
    seed=42,
    randomize_seed=False,
    width=1024,
    height=1024,
    guidance_scale=2.5,
    num_inference_steps=16,
    progress=gr.Progress(track_tqdm=True),
):
    """Generate image from text prompt"""
    try:
        device = "cuda" if torch.cuda.is_available() else "cpu"
        print(f"Using device: {device}")
        # Validate inputs
        if not prompt or len(prompt.strip()) == 0:
            raise ValueError("Please enter a valid prompt")

        if model is None or scheduler is None:
            raise RuntimeError("Model components not loaded. Please check the setup.")

        # Validate dimensions
        if (
            width < 256
            or width > MAX_IMAGE_SIZE
            or height < 256
            or height > MAX_IMAGE_SIZE
        ):
            raise ValueError(
                f"Image dimensions must be between 256 and {MAX_IMAGE_SIZE}"
            )

        if width % 32 != 0 or height % 32 != 0:
            raise ValueError("Image dimensions must be divisible by 32")

        if randomize_seed:
            seed = random.randint(0, MAX_SEED)

        generator = torch.Generator(device=device).manual_seed(seed)

        # Calculate latent dimensions
        spatial_downsample = 32 if "dc-ae" in config.model.vae_dir else 8
        latent_h = int(height / spatial_downsample)
        latent_w = int(width / spatial_downsample)

        progress(0.1, desc="Generating random latent...")

        # Generate random latent
        z = torch.randn(
            (1, model.in_channels, latent_h, latent_w),
            device=device,
            dtype=dtype,
            generator=generator,
        )

        progress(0.1, desc="Loading text encoder...")

        # Load text encoder
        text_encoder.set_attn_implementation("flash_attention_2")
        text_encoder.to(device)

        # Encode prompt
        cap_features, cap_mask = encode_prompt(
            tokenizer,
            text_encoder.model,
            device,
            dtype,
            [prompt],
            config.model.use_last_hidden_state,
            max_seq_length=config.model.max_seq_length,
        )

        # Encode null caption for CFG
        null_cap_feat, null_cap_mask = encode_prompt(
            tokenizer,
            text_encoder.model,
            device,
            dtype,
            [""],
            config.model.use_last_hidden_state,
            max_seq_length=config.model.max_seq_length,
        )

        cur_max_seq_len = cap_mask.sum(dim=-1).max()
        y = cap_features[:, :cur_max_seq_len]

        y_null = null_cap_feat[:, :cur_max_seq_len]
        y_null = y_null.expand(y.shape[0], cur_max_seq_len, null_cap_feat.shape[-1])

        # Generate image
        with torch.no_grad():
            samples = scheduler.sample(
                model,
                y,
                y_null,
                z,
                T_max=1.0,
                T_min=0.0,
                num_steps=num_inference_steps,
                cfg_scale=guidance_scale,
                cfg_low=0.0,
                cfg_high=1.0,
                stochasticity_ratio=0.0,
                sample_type="transition",
                step_callback=lambda step: progress(
                    0.1 + 0.9 * (step / num_inference_steps), desc="Generating image..."
                ),
            )[-1]
            samples = samples.to(torch.float32)

        # Decode to image
        images = decode_func(samples)
        images = (
            torch.clamp(127.5 * images + 128.0, 0, 255)
            .permute(0, 2, 3, 1)
            .to(torch.uint8)
            .contiguous()
        )
        image = Image.fromarray(images[0].cpu().numpy())

        progress(1.0, desc="Complete!")

        return image, seed

    except Exception as e:
        print(f"Error during image generation: {e}")
        # Return a placeholder image or error message
        error_img = Image.new("RGB", (512, 512), color="red")
        return error_img, seed


# Example prompts
examples = [
    ["a tiny astronaut hatching from an egg on the moon"],
    ["🐢 Wearing πŸ•Ά flying on the 🌈"],
    ["an anime illustration of a wiener schnitzel"],
    ["a photorealistic landscape of mountains at sunset"],
    ["a majestic lion in a golden savanna at sunset"],
    ["a futuristic city with flying cars and neon lights"],
    ["a cozy cabin in a snowy forest with smoke coming from the chimney"],
    ["a beautiful mermaid swimming in crystal clear water"],
]

# CSS styling
css = """
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

# Initialize model components
try:
    # flash_attn = get_kernel("kernels-community/flash-attn")
    load_model_components(device)
    print("Model components loaded successfully!")
except Exception as e:
    print(f"Error loading model components: {e}")
    print("Please ensure config and checkpoint files are available")

# Create Gradio interface
with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("# TiM Text-to-Image Generator")
        gr.Markdown(
            "Generate high-quality images from text prompts using the TiM (Transition in Matching) model"
        )

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Generate", scale=0)

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1,
                    maximum=15,
                    step=0.1,
                    value=2.5,
                )
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=16,
                )

        gr.Examples(
            examples=examples,
            fn=generate_image,
            inputs=[prompt],
            outputs=[result, seed],
            cache_examples=True,
            cache_mode="lazy",
        )

        gr.on(
            triggers=[run_button.click, prompt.submit],
            fn=generate_image,
            inputs=[
                prompt,
                seed,
                randomize_seed,
                width,
                height,
                guidance_scale,
                num_inference_steps,
            ],
            outputs=[result, seed],
        )

if __name__ == "__main__":
    demo.launch()