Spaces:
Sleeping
Sleeping
| import os | |
| import gradio as gr | |
| import litellm | |
| import requests | |
| import inspect | |
| import pandas as pd | |
| from doctest import debug | |
| from dotenv import load_dotenv | |
| from smolagents import ( | |
| CodeAgent, | |
| HfApiModel, | |
| LiteLLMModel, | |
| # OpenAIServerModel, | |
| Tool, | |
| FinalAnswerTool, | |
| ) | |
| from tools import ( | |
| DuckDuckGoSearchTool, | |
| FileDownloaderTool, | |
| HtmlTableExtractorTool, | |
| ImagesAnalyzerTool, | |
| LoadTextFileTool, | |
| LoadXlsxFileTool, | |
| RelevantInfoRetrieverTool, | |
| ReverseStringTool, | |
| # SpeechToTextTool, | |
| VideoAnalyzerTool, | |
| VisitWebpageTool, | |
| WebpageTablesContextRetrieverTool, | |
| # YoutubeTranscriptTool, | |
| WikipediaSearchTool, | |
| YoutubeVideoDownloaderTool, | |
| ) | |
| load_dotenv() | |
| HF_TOKEN = os.getenv("HF_U1ACAPP_TOKEN") | |
| # (Keep Constants as is) | |
| # --- Constants --- | |
| DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
| LLM_API_BASE = os.getenv("LLM_API_BASE") | |
| LLM_API_KEY = os.getenv("LLM_API_KEY") | |
| LLM_MODEL_ID = os.getenv("LLM_MODEL_ID") | |
| # Tools to use | |
| reverse_string_tool = ReverseStringTool() | |
| # speech_to_text_tool = SpeechToTextTool() | |
| trascriber_tool = Tool.from_space( | |
| space_id="hf-audio/whisper-large-v3-turbo", | |
| name="transcriber", | |
| description="Transcribe an audio file or youtube video either from path or from url", | |
| ) | |
| wikipedia_search_tool = WikipediaSearchTool() | |
| web_search_tool = DuckDuckGoSearchTool() | |
| visit_webpage_tool = VisitWebpageTool() | |
| relevant_info_tool = RelevantInfoRetrieverTool() | |
| youtube_video_downloader_tool = YoutubeVideoDownloaderTool() | |
| video_analyzer_tool = VideoAnalyzerTool() | |
| images_analyzer_tool = ImagesAnalyzerTool() | |
| file_downloader_tool = FileDownloaderTool() | |
| load_xls_file_tool = LoadXlsxFileTool() | |
| load_text_file_tool = LoadTextFileTool() | |
| webpage_tables_context_retriever_tool = WebpageTablesContextRetrieverTool() | |
| html_table_extractor_tool = HtmlTableExtractorTool() | |
| trascriber_tool.device = "cpu" | |
| final_answer_tool = FinalAnswerTool() | |
| final_answer_tool.description = """Returns the final answer that adheres strictly to the following guidelines: | |
| - Includes ONLY explicitly requested content in the exact format specified | |
| - Never includes: | |
| * Explanations, reasoning blocks, or step-by-step working | |
| * Measurements, units, or abbreviations unless required by the task | |
| * Any content not specified in the task | |
| - Matches requested formats precisely (e.g., CSV lists as "a, b, c") | |
| - Preserves all specified delimiters, brackets, or structures when requested | |
| - No Markdown, code blocks, or rich formatting unless explicitly asked | |
| - In comma separated lists makes sure that there is a space character after each comma | |
| - Provides ONLY the final output with: | |
| * No introductory text | |
| * No closing remarks | |
| * No supplemental information | |
| """ | |
| # --- Basic Agent Definition --- | |
| # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------ | |
| class BasicAgent: | |
| def __init__(self): | |
| print("BasicAgent initialized.") | |
| # model = LiteLLMModel( | |
| # model_id=LLM_MODEL_ID, | |
| # api_base=LLM_API_BASE, | |
| # api_key=LLM_API_KEY, | |
| # num_ctx=8192, | |
| # # flatten_messages_as_text=False, | |
| # ) | |
| model = HfApiModel( | |
| max_tokens=4096, | |
| temperature=0.5, | |
| provider="novita", | |
| model_id="Qwen/Qwen3-32B", | |
| custom_role_conversions=None, | |
| token=HF_TOKEN, | |
| ) | |
| self.agent = CodeAgent( | |
| tools=[ | |
| file_downloader_tool, | |
| reverse_string_tool, | |
| wikipedia_search_tool, | |
| # youtube_transcript_tool, | |
| web_search_tool, | |
| visit_webpage_tool, | |
| youtube_video_downloader_tool, | |
| trascriber_tool, | |
| video_analyzer_tool, | |
| images_analyzer_tool, | |
| webpage_tables_context_retriever_tool, | |
| html_table_extractor_tool, | |
| load_xls_file_tool, | |
| load_text_file_tool, | |
| final_answer_tool, | |
| # relevant_info_tool, | |
| ], | |
| model=model, | |
| # executor_type="e2b", | |
| additional_authorized_imports=[ | |
| "bs4", | |
| "datetime", | |
| "json", | |
| "numpy", | |
| "pandas", | |
| "requests", | |
| "lxml", | |
| # "youtube_dl", | |
| ], | |
| add_base_tools=True, # Add any additional base tools | |
| planning_interval=3, # Enable planning every 3 steps | |
| # max_steps=12, | |
| ) | |
| def __call__( | |
| self, question: str, task_id: str = None, attached_file: bool = False | |
| ) -> str: | |
| """Calling the agent | |
| :param question: the initial query | |
| :type question: str | |
| :param task_id: Required if attached_file is True; used to retrieve the file, defaults to None | |
| :type task_id: str, optional | |
| :param attached_file: If True, file content for task_id is appended to the question, defaults to False | |
| :type attached_file: bool, optional | |
| :raises ValueError: If attached_file is True but task_id is not provided. | |
| :return: the agent's answer | |
| :rtype: str | |
| """ | |
| print(f"Agent received question (first 50 chars): {question[:50]}...") | |
| if attached_file and not task_id: | |
| raise ValueError("task_id must be provided when attached_file is True") | |
| additional_args = None | |
| if attached_file: | |
| file_url = f"{DEFAULT_API_URL}/files/{task_id}" | |
| additional_args = {"file_url": file_url} | |
| agent_answer = self.agent.run(question, additional_args=additional_args) | |
| return agent_answer | |
| def run_and_submit_all(profile: gr.OAuthProfile | None): | |
| """ | |
| Fetches all questions, runs the BasicAgent on them, submits all answers, | |
| and displays the results. | |
| """ | |
| # --- Determine HF Space Runtime URL and Repo URL --- | |
| space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
| if profile: | |
| username = f"{profile.username}" | |
| print(f"User logged in: {username}") | |
| else: | |
| print("User not logged in.") | |
| return "Please Login to Hugging Face with the button.", None | |
| api_url = DEFAULT_API_URL | |
| questions_url = f"{api_url}/questions" | |
| submit_url = f"{api_url}/submit" | |
| # 1. Instantiate Agent ( modify this part to create your agent) | |
| try: | |
| agent = BasicAgent() | |
| except Exception as e: | |
| print(f"Error instantiating agent: {e}") | |
| return f"Error initializing agent: {e}", None | |
| # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
| agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
| print(agent_code) | |
| # 2. Fetch Questions | |
| print(f"Fetching questions from: {questions_url}") | |
| try: | |
| response = requests.get(questions_url, timeout=15) | |
| response.raise_for_status() | |
| questions_data = response.json() | |
| if not questions_data: | |
| print("Fetched questions list is empty.") | |
| return "Fetched questions list is empty or invalid format.", None | |
| print(f"Fetched {len(questions_data)} questions.") | |
| except requests.exceptions.RequestException as e: | |
| print(f"Error fetching questions: {e}") | |
| return f"Error fetching questions: {e}", None | |
| except requests.exceptions.JSONDecodeError as e: | |
| print(f"Error decoding JSON response from questions endpoint: {e}") | |
| print(f"Response text: {response.text[:500]}") | |
| return f"Error decoding server response for questions: {e}", None | |
| except Exception as e: | |
| print(f"An unexpected error occurred fetching questions: {e}") | |
| return f"An unexpected error occurred fetching questions: {e}", None | |
| # 3. Run your Agent | |
| results_log = [] | |
| answers_payload = [] | |
| print(f"Running agent on {len(questions_data)} questions...") | |
| for item in questions_data: | |
| task_id = item.get("task_id") | |
| question_text = item.get("question") | |
| if not task_id or question_text is None: | |
| print(f"Skipping item with missing task_id or question: {item}") | |
| continue | |
| try: | |
| file_attached = item.get("file_name", "") != "" | |
| submitted_answer = agent(question_text, task_id, file_attached) | |
| answers_payload.append( | |
| {"task_id": task_id, "submitted_answer": submitted_answer} | |
| ) | |
| results_log.append( | |
| { | |
| "Task ID": task_id, | |
| "Question": question_text, | |
| "Submitted Answer": submitted_answer, | |
| } | |
| ) | |
| except Exception as e: | |
| print(f"Error running agent on task {task_id}: {e}") | |
| results_log.append( | |
| { | |
| "Task ID": task_id, | |
| "Question": question_text, | |
| "Submitted Answer": f"AGENT ERROR: {e}", | |
| } | |
| ) | |
| if not answers_payload: | |
| print("Agent did not produce any answers to submit.") | |
| return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
| # 4. Prepare Submission | |
| submission_data = { | |
| "username": username.strip(), | |
| "agent_code": agent_code, | |
| "answers": answers_payload, | |
| } | |
| status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
| print(status_update) | |
| try: | |
| import json | |
| with open("answers.json", "w", encoding="utf-8") as ans_fp: | |
| json.dump(answers_payload, ans_fp) | |
| except Exception as e: | |
| print(f"Could not save answers to a file: {e}.") | |
| # 5. Submit | |
| print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
| try: | |
| response = requests.post(submit_url, json=submission_data, timeout=60) | |
| response.raise_for_status() | |
| result_data = response.json() | |
| final_status = ( | |
| f"Submission Successful!\n" | |
| f"User: {result_data.get('username')}\n" | |
| f"Overall Score: {result_data.get('score', 'N/A')}% " | |
| f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
| f"Message: {result_data.get('message', 'No message received.')}" | |
| ) | |
| print("Submission successful.") | |
| results_df = pd.DataFrame(results_log) | |
| return final_status, results_df | |
| except requests.exceptions.HTTPError as e: | |
| error_detail = f"Server responded with status {e.response.status_code}." | |
| try: | |
| error_json = e.response.json() | |
| error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
| except requests.exceptions.JSONDecodeError: | |
| error_detail += f" Response: {e.response.text[:500]}" | |
| status_message = f"Submission Failed: {error_detail}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except requests.exceptions.Timeout: | |
| status_message = "Submission Failed: The request timed out." | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except requests.exceptions.RequestException as e: | |
| status_message = f"Submission Failed: Network error - {e}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except Exception as e: | |
| status_message = f"An unexpected error occurred during submission: {e}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| # --- Build Gradio Interface using Blocks --- | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Basic Agent Evaluation Runner") | |
| gr.Markdown( | |
| """ | |
| **Instructions:** | |
| 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
| 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
| 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
| --- | |
| **Disclaimers:** | |
| Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
| This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
| """ | |
| ) | |
| gr.LoginButton() | |
| run_button = gr.Button("Run Evaluation & Submit All Answers") | |
| status_output = gr.Textbox( | |
| label="Run Status / Submission Result", lines=5, interactive=False | |
| ) | |
| # Removed max_rows=10 from DataFrame constructor | |
| results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
| run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table]) | |
| if __name__ == "__main__": | |
| print("\n" + "-" * 30 + " App Starting " + "-" * 30) | |
| # Check for SPACE_HOST and SPACE_ID at startup for information | |
| space_host_startup = os.getenv("SPACE_HOST") | |
| space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
| if space_host_startup: | |
| print(f"✅ SPACE_HOST found: {space_host_startup}") | |
| print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
| else: | |
| print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
| if space_id_startup: # Print repo URLs if SPACE_ID is found | |
| print(f"✅ SPACE_ID found: {space_id_startup}") | |
| print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
| print( | |
| f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main" | |
| ) | |
| else: | |
| print( | |
| "ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined." | |
| ) | |
| print("-" * (60 + len(" App Starting ")) + "\n") | |
| print("Launching Gradio Interface for Basic Agent Evaluation...") | |
| demo.launch(debug=True, share=False) | |