Spaces:
Running
on
Zero
Running
on
Zero
first commit
Browse files- app.py +165 -0
- requirements.txt +10 -0
app.py
ADDED
|
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
#
|
| 4 |
+
# Copyright @2023 RhapsodyAI, ModelBest Inc. (modelbest.cn)
|
| 5 |
+
#
|
| 6 |
+
# @author: bokai xu <bokesyo2000@gmail.com>
|
| 7 |
+
# @date: 2024/07/13
|
| 8 |
+
#
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
import tqdm
|
| 12 |
+
from PIL import Image
|
| 13 |
+
import hashlib
|
| 14 |
+
import torch
|
| 15 |
+
import fitz
|
| 16 |
+
import threading
|
| 17 |
+
import gradio as gr
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def get_image_md5(img: Image.Image):
|
| 21 |
+
img_byte_array = img.tobytes()
|
| 22 |
+
hash_md5 = hashlib.md5()
|
| 23 |
+
hash_md5.update(img_byte_array)
|
| 24 |
+
hex_digest = hash_md5.hexdigest()
|
| 25 |
+
return hex_digest
|
| 26 |
+
|
| 27 |
+
def pdf_to_images(pdf_path, dpi=100):
|
| 28 |
+
doc = fitz.open(pdf_path)
|
| 29 |
+
images = []
|
| 30 |
+
for page in tqdm.tqdm(doc):
|
| 31 |
+
pix = page.get_pixmap(dpi=dpi)
|
| 32 |
+
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
| 33 |
+
images.append(img)
|
| 34 |
+
return images
|
| 35 |
+
|
| 36 |
+
def calculate_md5_from_binary(binary_data):
|
| 37 |
+
hash_md5 = hashlib.md5()
|
| 38 |
+
hash_md5.update(binary_data)
|
| 39 |
+
return hash_md5.hexdigest()
|
| 40 |
+
|
| 41 |
+
class PDFVisualRetrieval:
|
| 42 |
+
def __init__(self, model, tokenizer):
|
| 43 |
+
self.tokenizer = tokenizer
|
| 44 |
+
self.model = model
|
| 45 |
+
self.reps = {}
|
| 46 |
+
self.images = {}
|
| 47 |
+
self.lock = threading.Lock()
|
| 48 |
+
|
| 49 |
+
def retrieve(self, knowledge_base: str, query: str, topk: int):
|
| 50 |
+
doc_reps = list(self.reps[knowledge_base].values())
|
| 51 |
+
query_with_instruction = "Represent this query for retrieving relavant document: " + query
|
| 52 |
+
with torch.no_grad():
|
| 53 |
+
query_rep = self.model(text=[query_with_instruction], image=[None], tokenizer=self.tokenizer).reps.squeeze(0)
|
| 54 |
+
doc_reps_cat = torch.stack(doc_reps, dim=0)
|
| 55 |
+
similarities = torch.matmul(query_rep, doc_reps_cat.T)
|
| 56 |
+
topk_values, topk_doc_ids = torch.topk(similarities, k=topk)
|
| 57 |
+
topk_values_np = topk_values.cpu().numpy()
|
| 58 |
+
topk_doc_ids_np = topk_doc_ids.cpu().numpy()
|
| 59 |
+
similarities_np = similarities.cpu().numpy()
|
| 60 |
+
all_images_doc_list = list(self.images[knowledge_base].values())
|
| 61 |
+
images_topk = [all_images_doc_list[idx] for idx in topk_doc_ids_np]
|
| 62 |
+
return topk_doc_ids_np, topk_values_np, images_topk
|
| 63 |
+
|
| 64 |
+
def add_pdf(self, knowledge_base_name: str, pdf_file_path: str, dpi: int = 100):
|
| 65 |
+
if knowledge_base_name not in self.reps:
|
| 66 |
+
self.reps[knowledge_base_name] = {}
|
| 67 |
+
if knowledge_base_name not in self.images:
|
| 68 |
+
self.images[knowledge_base_name] = {}
|
| 69 |
+
doc = fitz.open(pdf_file_path)
|
| 70 |
+
print("model encoding images..")
|
| 71 |
+
for page in tqdm.tqdm(doc):
|
| 72 |
+
pix = page.get_pixmap(dpi=dpi)
|
| 73 |
+
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
| 74 |
+
image_md5 = get_image_md5(image)
|
| 75 |
+
with torch.no_grad():
|
| 76 |
+
reps = self.model(text=[''], image=[image], tokenizer=self.tokenizer).reps
|
| 77 |
+
self.reps[knowledge_base_name][image_md5] = reps.squeeze(0)
|
| 78 |
+
self.images[knowledge_base_name][image_md5] = image
|
| 79 |
+
return
|
| 80 |
+
|
| 81 |
+
def add_pdf_gradio(self, pdf_file_binary, progress=gr.Progress()):
|
| 82 |
+
knowledge_base_name = calculate_md5_from_binary(pdf_file_binary)
|
| 83 |
+
if knowledge_base_name not in self.reps:
|
| 84 |
+
self.reps[knowledge_base_name] = {}
|
| 85 |
+
else:
|
| 86 |
+
return knowledge_base_name
|
| 87 |
+
if knowledge_base_name not in self.images:
|
| 88 |
+
self.images[knowledge_base_name] = {}
|
| 89 |
+
dpi = 100
|
| 90 |
+
doc = fitz.open("pdf", pdf_file_binary)
|
| 91 |
+
for page in progress.tqdm(doc):
|
| 92 |
+
with self.lock: # because we hope one 16G gpu only process one image at the same time
|
| 93 |
+
pix = page.get_pixmap(dpi=dpi)
|
| 94 |
+
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
| 95 |
+
image_md5 = get_image_md5(image)
|
| 96 |
+
with torch.no_grad():
|
| 97 |
+
reps = self.model(text=[''], image=[image], tokenizer=self.tokenizer).reps
|
| 98 |
+
self.reps[knowledge_base_name][image_md5] = reps.squeeze(0)
|
| 99 |
+
self.images[knowledge_base_name][image_md5] = image
|
| 100 |
+
return knowledge_base_name
|
| 101 |
+
|
| 102 |
+
def retrieve_gradio(self, knowledge_base: str, query: str, topk: int):
|
| 103 |
+
doc_reps = list(self.reps[knowledge_base].values())
|
| 104 |
+
query_with_instruction = "Represent this query for retrieving relavant document: " + query
|
| 105 |
+
with torch.no_grad():
|
| 106 |
+
query_rep = self.model(text=[query_with_instruction], image=[None], tokenizer=self.tokenizer).reps.squeeze(0)
|
| 107 |
+
doc_reps_cat = torch.stack(doc_reps, dim=0)
|
| 108 |
+
similarities = torch.matmul(query_rep, doc_reps_cat.T)
|
| 109 |
+
topk_values, topk_doc_ids = torch.topk(similarities, k=topk)
|
| 110 |
+
topk_values_np = topk_values.cpu().numpy()
|
| 111 |
+
topk_doc_ids_np = topk_doc_ids.cpu().numpy()
|
| 112 |
+
similarities_np = similarities.cpu().numpy()
|
| 113 |
+
all_images_doc_list = list(self.images[knowledge_base].values())
|
| 114 |
+
images_topk = [all_images_doc_list[idx] for idx in topk_doc_ids_np]
|
| 115 |
+
return images_topk
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
if __name__ == "__main__":
|
| 119 |
+
from transformers import AutoModel
|
| 120 |
+
from transformers import AutoTokenizer
|
| 121 |
+
from PIL import Image
|
| 122 |
+
import torch
|
| 123 |
+
|
| 124 |
+
device = 'cpu'
|
| 125 |
+
|
| 126 |
+
# Load model, be sure to substitute `model_path` by your model path
|
| 127 |
+
model_path = 'RhapsodyAI/minicpm-visual-embedding-v0' # replace with your local model path
|
| 128 |
+
# pdf_path = "/home/jeeves/xubokai/minicpm-visual-embedding-v0/2406.07422v1.pdf"
|
| 129 |
+
|
| 130 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
| 131 |
+
model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
|
| 132 |
+
model.to(device)
|
| 133 |
+
|
| 134 |
+
retriever = PDFVisualRetrieval(model=model, tokenizer=tokenizer)
|
| 135 |
+
|
| 136 |
+
# topk_doc_ids_np, topk_values_np, images_topk = retriever.retrieve(knowledge_base='test', query='what is the number of VQ of this kind of codec method?', topk=1)
|
| 137 |
+
# # 2
|
| 138 |
+
# topk_doc_ids_np, topk_values_np, images_topk = retriever.retrieve(knowledge_base='test', query='the training loss curve of this paper?', topk=1)
|
| 139 |
+
# # 3
|
| 140 |
+
# topk_doc_ids_np, topk_values_np, images_topk = retriever.retrieve(knowledge_base='test', query='the experiment table?', topk=1)
|
| 141 |
+
# # 2
|
| 142 |
+
|
| 143 |
+
with gr.Blocks() as app:
|
| 144 |
+
gr.Markdown("# Memex: OCR-free Visual Document Retrieval @RhapsodyAI")
|
| 145 |
+
|
| 146 |
+
with gr.Row():
|
| 147 |
+
file_input = gr.File(type="binary", label="Upload PDF")
|
| 148 |
+
file_result = gr.Text(label="Knowledge Base ID (remember this!)")
|
| 149 |
+
process_button = gr.Button("Process PDF")
|
| 150 |
+
|
| 151 |
+
process_button.click(retriever.add_pdf_gradio, inputs=[file_input], outputs=file_result)
|
| 152 |
+
|
| 153 |
+
with gr.Row():
|
| 154 |
+
kb_id_input = gr.Text(label="Your Knowledge Base ID")
|
| 155 |
+
query_input = gr.Text(label="Your Queston")
|
| 156 |
+
topk_input = inputs=gr.Number(value=1, minimum=1, maximum=5, step=1, label="Top K")
|
| 157 |
+
retrieve_button = gr.Button("Retrieve")
|
| 158 |
+
|
| 159 |
+
with gr.Row():
|
| 160 |
+
images_output = gr.Gallery(label="Retrieved Pages")
|
| 161 |
+
|
| 162 |
+
retrieve_button.click(retriever.retrieve_gradio, inputs=[kb_id_input, query_input, topk_input], outputs=images_output)
|
| 163 |
+
|
| 164 |
+
app.launch()
|
| 165 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
PyMuPDF
|
| 2 |
+
tqdm
|
| 3 |
+
gradio
|
| 4 |
+
Pillow==10.1.0
|
| 5 |
+
timm==0.9.10
|
| 6 |
+
torch==2.1.2
|
| 7 |
+
torchvision==0.16.2
|
| 8 |
+
transformers==4.36.0
|
| 9 |
+
sentencepiece==0.1.99
|
| 10 |
+
numpy==1.26.0
|