Spaces:
Running
on
Zero
Running
on
Zero
add vote
Browse files
app.py
CHANGED
|
@@ -40,7 +40,7 @@ def calculate_md5_from_binary(binary_data):
|
|
| 40 |
hash_md5.update(binary_data)
|
| 41 |
return hash_md5.hexdigest()
|
| 42 |
|
| 43 |
-
@spaces.GPU(duration=
|
| 44 |
def add_pdf_gradio(pdf_file_binary, progress=gr.Progress()):
|
| 45 |
global model, tokenizer
|
| 46 |
|
|
@@ -84,6 +84,7 @@ def add_pdf_gradio(pdf_file_binary, progress=gr.Progress()):
|
|
| 84 |
|
| 85 |
return knowledge_base_name
|
| 86 |
|
|
|
|
| 87 |
def retrieve_gradio(knowledge_base: str, query: str, topk: int):
|
| 88 |
global model, tokenizer
|
| 89 |
|
|
@@ -104,12 +105,6 @@ def retrieve_gradio(knowledge_base: str, query: str, topk: int):
|
|
| 104 |
query_rep = model(text=[query_with_instruction], image=[None], tokenizer=tokenizer).reps.squeeze(0).cpu()
|
| 105 |
|
| 106 |
query_md5 = hashlib.md5(query.encode()).hexdigest()
|
| 107 |
-
with open(os.path.join(target_cache_dir, f"q-{query_md5}.json"), 'w') as f:
|
| 108 |
-
f.write(json.dumps(
|
| 109 |
-
{
|
| 110 |
-
"query": query
|
| 111 |
-
}, indent=4, ensure_ascii=False
|
| 112 |
-
))
|
| 113 |
|
| 114 |
doc_reps_cat = torch.stack([torch.Tensor(i) for i in doc_reps], dim=0)
|
| 115 |
|
|
@@ -125,9 +120,57 @@ def retrieve_gradio(knowledge_base: str, query: str, topk: int):
|
|
| 125 |
|
| 126 |
images_topk = [Image.open(os.path.join(target_cache_dir, f"{md5s[idx]}.png")) for idx in topk_doc_ids_np]
|
| 127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
return images_topk
|
| 129 |
|
| 130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
device = 'cuda'
|
| 132 |
model_path = 'RhapsodyAI/minicpm-visual-embedding-v0' # replace with your local model path
|
| 133 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
@@ -136,9 +179,10 @@ model.to(device)
|
|
| 136 |
|
| 137 |
|
| 138 |
with gr.Blocks() as app:
|
| 139 |
-
gr.Markdown("# Memex: OCR-free Visual Document Retrieval @RhapsodyAI
|
| 140 |
|
| 141 |
-
gr.Markdown("
|
|
|
|
| 142 |
|
| 143 |
with gr.Row():
|
| 144 |
file_input = gr.File(type="binary", label="Upload PDF")
|
|
@@ -148,16 +192,23 @@ with gr.Blocks() as app:
|
|
| 148 |
process_button.click(add_pdf_gradio, inputs=[file_input], outputs=file_result)
|
| 149 |
|
| 150 |
with gr.Row():
|
| 151 |
-
kb_id_input = gr.Text(label="Your Knowledge Base ID")
|
| 152 |
query_input = gr.Text(label="Your Queston")
|
| 153 |
topk_input = inputs=gr.Number(value=1, minimum=1, maximum=5, step=1, label="Top K")
|
| 154 |
retrieve_button = gr.Button("Retrieve")
|
| 155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
with gr.Row():
|
| 157 |
images_output = gr.Gallery(label="Retrieved Pages")
|
| 158 |
|
| 159 |
retrieve_button.click(retrieve_gradio, inputs=[kb_id_input, query_input, topk_input], outputs=images_output)
|
| 160 |
|
|
|
|
|
|
|
|
|
|
| 161 |
gr.Markdown("By using this demo, you agree to share your use data with us for research purpose, to help improve user experience.")
|
| 162 |
|
| 163 |
app.launch()
|
|
|
|
| 40 |
hash_md5.update(binary_data)
|
| 41 |
return hash_md5.hexdigest()
|
| 42 |
|
| 43 |
+
@spaces.GPU(duration=100)
|
| 44 |
def add_pdf_gradio(pdf_file_binary, progress=gr.Progress()):
|
| 45 |
global model, tokenizer
|
| 46 |
|
|
|
|
| 84 |
|
| 85 |
return knowledge_base_name
|
| 86 |
|
| 87 |
+
# @spaces.GPU
|
| 88 |
def retrieve_gradio(knowledge_base: str, query: str, topk: int):
|
| 89 |
global model, tokenizer
|
| 90 |
|
|
|
|
| 105 |
query_rep = model(text=[query_with_instruction], image=[None], tokenizer=tokenizer).reps.squeeze(0).cpu()
|
| 106 |
|
| 107 |
query_md5 = hashlib.md5(query.encode()).hexdigest()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
doc_reps_cat = torch.stack([torch.Tensor(i) for i in doc_reps], dim=0)
|
| 110 |
|
|
|
|
| 120 |
|
| 121 |
images_topk = [Image.open(os.path.join(target_cache_dir, f"{md5s[idx]}.png")) for idx in topk_doc_ids_np]
|
| 122 |
|
| 123 |
+
with open(os.path.join(target_cache_dir, f"q-{query_md5}.json"), 'w') as f:
|
| 124 |
+
f.write(json.dumps(
|
| 125 |
+
{
|
| 126 |
+
"knowledge_base": knowledge_base,
|
| 127 |
+
"query": query,
|
| 128 |
+
"retrived_docs": [os.path.join(target_cache_dir, f"{md5s[idx]}.png") for idx in topk_doc_ids_np]
|
| 129 |
+
}, indent=4, ensure_ascii=False
|
| 130 |
+
))
|
| 131 |
+
|
| 132 |
return images_topk
|
| 133 |
|
| 134 |
|
| 135 |
+
def upvote(knowledge_base, query):
|
| 136 |
+
global model, tokenizer
|
| 137 |
+
|
| 138 |
+
target_cache_dir = os.path.join(cache_dir, knowledge_base)
|
| 139 |
+
|
| 140 |
+
query_md5 = hashlib.md5(query.encode()).hexdigest()
|
| 141 |
+
|
| 142 |
+
with open(os.path.join(target_cache_dir, f"q-{query_md5}.json"), 'r') as f:
|
| 143 |
+
data = json.loads(f.read())
|
| 144 |
+
|
| 145 |
+
data["user_preference"] = "upvote"
|
| 146 |
+
|
| 147 |
+
with open(os.path.join(target_cache_dir, f"q-{query_md5}-withpref.json"), 'w') as f:
|
| 148 |
+
f.write(json.dumps(data, indent=4, ensure_ascii=False))
|
| 149 |
+
|
| 150 |
+
print("up", os.path.join(target_cache_dir, f"q-{query_md5}-withpref.json"))
|
| 151 |
+
|
| 152 |
+
return
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
def downvote(knowledge_base, query):
|
| 156 |
+
global model, tokenizer
|
| 157 |
+
|
| 158 |
+
target_cache_dir = os.path.join(cache_dir, knowledge_base)
|
| 159 |
+
|
| 160 |
+
query_md5 = hashlib.md5(query.encode()).hexdigest()
|
| 161 |
+
|
| 162 |
+
with open(os.path.join(target_cache_dir, f"q-{query_md5}.json"), 'r') as f:
|
| 163 |
+
data = json.loads(f.read())
|
| 164 |
+
|
| 165 |
+
data["user_preference"] = "downvote"
|
| 166 |
+
|
| 167 |
+
with open(os.path.join(target_cache_dir, f"q-{query_md5}-withpref.json"), 'w') as f:
|
| 168 |
+
f.write(json.dumps(data, indent=4, ensure_ascii=False))
|
| 169 |
+
|
| 170 |
+
print("down", os.path.join(target_cache_dir, f"q-{query_md5}-withpref.json"))
|
| 171 |
+
return
|
| 172 |
+
|
| 173 |
+
|
| 174 |
device = 'cuda'
|
| 175 |
model_path = 'RhapsodyAI/minicpm-visual-embedding-v0' # replace with your local model path
|
| 176 |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
|
|
| 179 |
|
| 180 |
|
| 181 |
with gr.Blocks() as app:
|
| 182 |
+
gr.Markdown("# Memex: OCR-free Visual Document Retrieval @RhapsodyAI")
|
| 183 |
|
| 184 |
+
gr.Markdown("- We open-sourced our model at [RhapsodyAI/minicpm-visual-embedding-v0](https://huggingface.co/RhapsodyAI/minicpm-visual-embedding-v0)")
|
| 185 |
+
gr.Markdown("- Currently we support PDF document with less than 50 pages, PDF over 50 pages will reach GPU time limit.")
|
| 186 |
|
| 187 |
with gr.Row():
|
| 188 |
file_input = gr.File(type="binary", label="Upload PDF")
|
|
|
|
| 192 |
process_button.click(add_pdf_gradio, inputs=[file_input], outputs=file_result)
|
| 193 |
|
| 194 |
with gr.Row():
|
| 195 |
+
kb_id_input = gr.Text(label="Your Knowledge Base ID (paste your Knowledge Base ID here:)")
|
| 196 |
query_input = gr.Text(label="Your Queston")
|
| 197 |
topk_input = inputs=gr.Number(value=1, minimum=1, maximum=5, step=1, label="Top K")
|
| 198 |
retrieve_button = gr.Button("Retrieve")
|
| 199 |
|
| 200 |
+
with gr.Row():
|
| 201 |
+
downvote_button = gr.Button("🤣Downvote")
|
| 202 |
+
upvote_button = gr.Button("🤗Upvote")
|
| 203 |
+
|
| 204 |
with gr.Row():
|
| 205 |
images_output = gr.Gallery(label="Retrieved Pages")
|
| 206 |
|
| 207 |
retrieve_button.click(retrieve_gradio, inputs=[kb_id_input, query_input, topk_input], outputs=images_output)
|
| 208 |
|
| 209 |
+
upvote_button.click(upvote, inputs=[kb_id_input, query_input], outputs=None)
|
| 210 |
+
downvote_button.click(downvote, inputs=[kb_id_input, query_input], outputs=None)
|
| 211 |
+
|
| 212 |
gr.Markdown("By using this demo, you agree to share your use data with us for research purpose, to help improve user experience.")
|
| 213 |
|
| 214 |
app.launch()
|