Spaces:
Running
on
Zero
Running
on
Zero
finish
Browse files
app.py
CHANGED
|
@@ -16,7 +16,17 @@ import fitz
|
|
| 16 |
import threading
|
| 17 |
import gradio as gr
|
| 18 |
import spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
|
|
|
|
|
|
| 20 |
|
| 21 |
def get_image_md5(img: Image.Image):
|
| 22 |
img_byte_array = img.tobytes()
|
|
@@ -25,152 +35,129 @@ def get_image_md5(img: Image.Image):
|
|
| 25 |
hex_digest = hash_md5.hexdigest()
|
| 26 |
return hex_digest
|
| 27 |
|
| 28 |
-
def pdf_to_images(pdf_path, dpi=100):
|
| 29 |
-
doc = fitz.open(pdf_path)
|
| 30 |
-
images = []
|
| 31 |
-
for page in tqdm.tqdm(doc):
|
| 32 |
-
pix = page.get_pixmap(dpi=dpi)
|
| 33 |
-
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
| 34 |
-
images.append(img)
|
| 35 |
-
return images
|
| 36 |
-
|
| 37 |
def calculate_md5_from_binary(binary_data):
|
| 38 |
hash_md5 = hashlib.md5()
|
| 39 |
hash_md5.update(binary_data)
|
| 40 |
return hash_md5.hexdigest()
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
self.images = {}
|
| 48 |
-
self.lock = threading.Lock()
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
topk_values_np = topk_values.cpu().numpy()
|
| 59 |
-
topk_doc_ids_np = topk_doc_ids.cpu().numpy()
|
| 60 |
-
similarities_np = similarities.cpu().numpy()
|
| 61 |
-
all_images_doc_list = list(self.images[knowledge_base].values())
|
| 62 |
-
images_topk = [all_images_doc_list[idx] for idx in topk_doc_ids_np]
|
| 63 |
-
return topk_doc_ids_np, topk_values_np, images_topk
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
image_md5 = get_image_md5(image)
|
| 76 |
-
with torch.no_grad():
|
| 77 |
-
reps = self.model(text=[''], image=[image], tokenizer=self.tokenizer).reps
|
| 78 |
-
self.reps[knowledge_base_name][image_md5] = reps.squeeze(0)
|
| 79 |
-
self.images[knowledge_base_name][image_md5] = image
|
| 80 |
-
return
|
| 81 |
-
|
| 82 |
-
def add_pdf_gradio(self, pdf_file_binary, progress=gr.Progress()):
|
| 83 |
-
knowledge_base_name = calculate_md5_from_binary(pdf_file_binary)
|
| 84 |
-
if knowledge_base_name not in self.reps:
|
| 85 |
-
self.reps[knowledge_base_name] = {}
|
| 86 |
-
else:
|
| 87 |
-
return knowledge_base_name
|
| 88 |
-
if knowledge_base_name not in self.images:
|
| 89 |
-
self.images[knowledge_base_name] = {}
|
| 90 |
-
dpi = 100
|
| 91 |
-
doc = fitz.open("pdf", pdf_file_binary)
|
| 92 |
-
|
| 93 |
-
for page in progress.tqdm(doc):
|
| 94 |
-
# with self.lock: # because we hope one 16G gpu only process one image at the same time
|
| 95 |
-
pix = page.get_pixmap(dpi=dpi)
|
| 96 |
-
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
| 97 |
-
image_md5 = get_image_md5(image)
|
| 98 |
-
with torch.no_grad():
|
| 99 |
-
reps = self.model(text=[''], image=[image], tokenizer=self.tokenizer).reps
|
| 100 |
-
self.reps[knowledge_base_name][image_md5] = reps.squeeze(0)
|
| 101 |
-
self.images[knowledge_base_name][image_md5] = image
|
| 102 |
-
|
| 103 |
-
return knowledge_base_name
|
| 104 |
-
|
| 105 |
-
def retrieve_gradio(self, knowledge_base: str, query: str, topk: int):
|
| 106 |
-
doc_reps = list(self.reps[knowledge_base].values())
|
| 107 |
-
query_with_instruction = "Represent this query for retrieving relavant document: " + query
|
| 108 |
with torch.no_grad():
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
from PIL import Image
|
| 125 |
-
import torch
|
| 126 |
|
| 127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
|
|
|
| 132 |
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
return retriever.retrieve_gradio(knowledge_base, query, topk)
|
| 146 |
-
|
| 147 |
-
# topk_doc_ids_np, topk_values_np, images_topk = retriever.retrieve(knowledge_base='test', query='what is the number of VQ of this kind of codec method?', topk=1)
|
| 148 |
-
# # 2
|
| 149 |
-
# topk_doc_ids_np, topk_values_np, images_topk = retriever.retrieve(knowledge_base='test', query='the training loss curve of this paper?', topk=1)
|
| 150 |
-
# # 3
|
| 151 |
-
# topk_doc_ids_np, topk_values_np, images_topk = retriever.retrieve(knowledge_base='test', query='the experiment table?', topk=1)
|
| 152 |
-
# # 2
|
| 153 |
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
file_result = gr.Text(label="Knowledge Base ID (remember this!)")
|
| 160 |
-
process_button = gr.Button("Process PDF")
|
| 161 |
-
|
| 162 |
-
process_button.click(add_pdf_gradio, inputs=[file_input], outputs=file_result)
|
| 163 |
-
|
| 164 |
-
with gr.Row():
|
| 165 |
-
kb_id_input = gr.Text(label="Your Knowledge Base ID")
|
| 166 |
-
query_input = gr.Text(label="Your Queston")
|
| 167 |
-
topk_input = inputs=gr.Number(value=1, minimum=1, maximum=5, step=1, label="Top K")
|
| 168 |
-
retrieve_button = gr.Button("Retrieve")
|
| 169 |
-
|
| 170 |
-
with gr.Row():
|
| 171 |
-
images_output = gr.Gallery(label="Retrieved Pages")
|
| 172 |
-
|
| 173 |
-
retrieve_button.click(retrieve_gradio, inputs=[kb_id_input, query_input, topk_input], outputs=images_output)
|
| 174 |
-
|
| 175 |
-
app.launch()
|
| 176 |
|
|
|
|
| 16 |
import threading
|
| 17 |
import gradio as gr
|
| 18 |
import spaces
|
| 19 |
+
import os
|
| 20 |
+
from transformers import AutoModel
|
| 21 |
+
from transformers import AutoTokenizer
|
| 22 |
+
from PIL import Image
|
| 23 |
+
import torch
|
| 24 |
+
import os
|
| 25 |
+
import numpy as np
|
| 26 |
+
import json
|
| 27 |
|
| 28 |
+
cache_dir = '/data/kb_cache'
|
| 29 |
+
os.makedirs(cache_dir, exist_ok=True)
|
| 30 |
|
| 31 |
def get_image_md5(img: Image.Image):
|
| 32 |
img_byte_array = img.tobytes()
|
|
|
|
| 35 |
hex_digest = hash_md5.hexdigest()
|
| 36 |
return hex_digest
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
def calculate_md5_from_binary(binary_data):
|
| 39 |
hash_md5 = hashlib.md5()
|
| 40 |
hash_md5.update(binary_data)
|
| 41 |
return hash_md5.hexdigest()
|
| 42 |
|
| 43 |
+
@spaces.GPU(duration=120)
|
| 44 |
+
def add_pdf_gradio(pdf_file_binary, progress=gr.Progress()):
|
| 45 |
+
global model, tokenizer
|
| 46 |
+
|
| 47 |
+
knowledge_base_name = calculate_md5_from_binary(pdf_file_binary)
|
|
|
|
|
|
|
| 48 |
|
| 49 |
+
this_cache_dir = os.path.join(cache_dir, knowledge_base_name)
|
| 50 |
+
os.makedirs(this_cache_dir, exist_ok=True)
|
| 51 |
+
|
| 52 |
+
with open(os.path.join(this_cache_dir, f"src.pdf"), 'wb') as file:
|
| 53 |
+
file.write(pdf_file_binary)
|
| 54 |
+
|
| 55 |
+
dpi = 100
|
| 56 |
+
doc = fitz.open("pdf", pdf_file_binary)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
reps_list = []
|
| 59 |
+
images = []
|
| 60 |
+
image_md5s = []
|
| 61 |
+
|
| 62 |
+
for page in progress.tqdm(doc):
|
| 63 |
+
# with self.lock: # because we hope one 16G gpu only process one image at the same time
|
| 64 |
+
pix = page.get_pixmap(dpi=dpi)
|
| 65 |
+
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
| 66 |
+
image_md5 = get_image_md5(image)
|
| 67 |
+
image_md5s.append(image_md5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
with torch.no_grad():
|
| 69 |
+
reps = model(text=[''], image=[image], tokenizer=tokenizer).reps
|
| 70 |
+
reps_list.append(reps.squeeze(0).cpu().numpy())
|
| 71 |
+
images.append(image)
|
| 72 |
+
|
| 73 |
+
for idx in range(len(images)):
|
| 74 |
+
image = images[idx]
|
| 75 |
+
image_md5 = image_md5s[idx]
|
| 76 |
+
cache_image_path = os.path.join(this_cache_dir, f"{image_md5}.png")
|
| 77 |
+
image.save(cache_image_path)
|
| 78 |
+
|
| 79 |
+
np.save(os.path.join(this_cache_dir, f"reps.npy"), reps_list)
|
| 80 |
+
|
| 81 |
+
with open(os.path.join(this_cache_dir, f"md5s.txt"), 'w') as f:
|
| 82 |
+
for item in image_md5s:
|
| 83 |
+
f.write(item+'\n')
|
|
|
|
|
|
|
| 84 |
|
| 85 |
+
return knowledge_base_name
|
| 86 |
+
|
| 87 |
+
# @spaces.GPU
|
| 88 |
+
def retrieve_gradio(knowledge_base: str, query: str, topk: int):
|
| 89 |
+
global model, tokenizer
|
| 90 |
+
|
| 91 |
+
target_cache_dir = os.path.join(cache_dir, knowledge_base)
|
| 92 |
+
|
| 93 |
+
if not os.path.exists(target_cache_dir):
|
| 94 |
+
return None
|
| 95 |
|
| 96 |
+
md5s = []
|
| 97 |
+
with open(os.path.join(target_cache_dir, f"md5s.txt"), 'r') as f:
|
| 98 |
+
for line in f:
|
| 99 |
+
md5s.append(line.rstrip('\n'))
|
| 100 |
|
| 101 |
+
doc_reps = np.load(os.path.join(target_cache_dir, f"reps.npy"))
|
| 102 |
+
|
| 103 |
+
query_with_instruction = "Represent this query for retrieving relavant document: " + query
|
| 104 |
+
with torch.no_grad():
|
| 105 |
+
query_rep = model(text=[query_with_instruction], image=[None], tokenizer=tokenizer).reps.squeeze(0).cpu()
|
| 106 |
+
|
| 107 |
+
query_md5 = hashlib.md5(query.encode()).hexdigest()
|
| 108 |
+
with open(os.path.join(target_cache_dir, f"q-{query_md5}.json"), 'w') as f:
|
| 109 |
+
f.write(json.dumps(
|
| 110 |
+
{
|
| 111 |
+
"query": query
|
| 112 |
+
}, indent=4, ensure_ascii=False
|
| 113 |
+
))
|
| 114 |
+
|
| 115 |
+
doc_reps_cat = torch.stack([torch.Tensor(i) for i in doc_reps], dim=0)
|
| 116 |
+
|
| 117 |
+
similarities = torch.matmul(query_rep, doc_reps_cat.T)
|
| 118 |
+
|
| 119 |
+
topk_values, topk_doc_ids = torch.topk(similarities, k=topk)
|
| 120 |
+
|
| 121 |
+
topk_values_np = topk_values.cpu().numpy()
|
| 122 |
+
|
| 123 |
+
topk_doc_ids_np = topk_doc_ids.cpu().numpy()
|
| 124 |
+
|
| 125 |
+
similarities_np = similarities.cpu().numpy()
|
| 126 |
+
|
| 127 |
+
images_topk = [Image.open(os.path.join(target_cache_dir, f"{md5s[idx]}.png")) for idx in topk_doc_ids_np]
|
| 128 |
+
|
| 129 |
+
return images_topk
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
device = 'cuda'
|
| 133 |
+
model_path = 'RhapsodyAI/minicpm-visual-embedding-v0' # replace with your local model path
|
| 134 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
| 135 |
+
model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
|
| 136 |
+
model.to(device)
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
with gr.Blocks() as app:
|
| 140 |
+
gr.Markdown("# Memex: OCR-free Visual Document Retrieval @RhapsodyAI")
|
| 141 |
|
| 142 |
+
with gr.Row():
|
| 143 |
+
file_input = gr.File(type="binary", label="Upload PDF")
|
| 144 |
+
file_result = gr.Text(label="Knowledge Base ID (remember this!)")
|
| 145 |
+
process_button = gr.Button("Process PDF")
|
| 146 |
|
| 147 |
+
process_button.click(add_pdf_gradio, inputs=[file_input], outputs=file_result)
|
| 148 |
+
|
| 149 |
+
with gr.Row():
|
| 150 |
+
kb_id_input = gr.Text(label="Your Knowledge Base ID")
|
| 151 |
+
query_input = gr.Text(label="Your Queston")
|
| 152 |
+
topk_input = inputs=gr.Number(value=1, minimum=1, maximum=5, step=1, label="Top K")
|
| 153 |
+
retrieve_button = gr.Button("Retrieve")
|
| 154 |
|
| 155 |
+
with gr.Row():
|
| 156 |
+
images_output = gr.Gallery(label="Retrieved Pages")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
|
| 158 |
+
retrieve_button.click(retrieve_gradio, inputs=[kb_id_input, query_input, topk_input], outputs=images_output)
|
| 159 |
+
|
| 160 |
+
gr.Markdown("By using this demo, you agree to share your use data with us for research purpose, to help improve user experience.")
|
| 161 |
+
|
| 162 |
+
app.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
|