import torch import tempfile import logging import soundfile as sf import numpy as np import asyncio from typing import Optional logger = logging.getLogger(__name__) class RobustTTSClient: """ Robust TTS client that always works - generates placeholder audio tones No external dependencies that can fail """ def __init__(self): self.device = "cuda" if torch.cuda.is_available() else "cpu" self.model_loaded = False logger.info(f"Robust TTS Client initialized on device: {self.device}") async def load_model(self): """Always succeeds - no actual model loading""" try: logger.info("Setting up robust placeholder TTS...") self.model_loaded = True logger.info("✅ Robust TTS ready (placeholder audio mode)") return True except Exception as e: logger.error(f"❌ Unexpected error in TTS setup: {e}") # Even if something goes wrong, we can still generate audio self.model_loaded = True return True def generate_tone_audio(self, text: str, voice_id: Optional[str] = None) -> str: """Generate audio tone based on text content - always works""" try: # Calculate duration based on text length duration = max(2.0, min(len(text) * 0.08, 15.0)) # 0.08s per character, max 15s sample_rate = 22050 # Standard audio sample rate # Generate time array t = np.linspace(0, duration, int(sample_rate * duration), False) # Create varied tones based on text and voice_id base_freq = 440 # A4 note # Vary frequency based on voice_id (different "voices") voice_multipliers = { "21m00Tcm4TlvDq8ikWAM": 1.0, # Female (higher) "pNInz6obpgDQGcFmaJgB": 0.75, # Male (lower) "EXAVITQu4vr4xnSDxMaL": 1.1, # Sweet female "ErXwobaYiN019PkySvjV": 0.8, # Professional male "TxGEqnHWrfWFTfGW9XjX": 0.65, # Deep male "yoZ06aMxZJJ28mfd3POQ": 0.9, # Friendly "AZnzlk1XvdvUeBnXmlld": 1.05, # Strong female } freq_multiplier = voice_multipliers.get(voice_id, 1.0) frequency = base_freq * freq_multiplier # Generate primary tone audio_data = 0.3 * np.sin(2 * np.pi * frequency * t) # Add harmonics for more natural sound audio_data += 0.15 * np.sin(2 * np.pi * frequency * 2 * t) # Octave audio_data += 0.1 * np.sin(2 * np.pi * frequency * 3 * t) # Fifth # Add text-based variation (different words create different patterns) text_hash = abs(hash(text.lower())) % 1000 variation_freq = 50 + (text_hash % 200) # 50-250 Hz variation audio_data += 0.05 * np.sin(2 * np.pi * variation_freq * t) # Add amplitude envelope (fade in/out) fade_samples = int(0.1 * sample_rate) # 0.1 second fade if len(audio_data) > 2 * fade_samples: # Fade in audio_data[:fade_samples] *= np.linspace(0, 1, fade_samples) # Fade out audio_data[-fade_samples:] *= np.linspace(1, 0, fade_samples) # Normalize audio audio_data = audio_data / np.max(np.abs(audio_data)) return audio_data, sample_rate except Exception as e: logger.error(f"Error in tone generation: {e}") # Fallback to simple beep duration = 2.0 sample_rate = 22050 t = np.linspace(0, duration, int(sample_rate * duration), False) audio_data = 0.3 * np.sin(2 * np.pi * 440 * t) return audio_data, sample_rate async def text_to_speech(self, text: str, voice_id: Optional[str] = None) -> str: """ Convert text to speech - generates placeholder audio that always works """ if not self.model_loaded: logger.info("TTS not loaded, loading now...") success = await self.load_model() if not success: logger.error("TTS loading failed, but continuing with basic audio") try: logger.info(f"Generating audio for text: {text[:50]}...") logger.info(f"Using voice profile: {voice_id or 'default'}") # Generate audio data audio_data, sample_rate = self.generate_tone_audio(text, voice_id) # Save to temporary file temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.wav') sf.write(temp_file.name, audio_data, samplerate=sample_rate) temp_file.close() logger.info(f"✅ Generated audio file: {temp_file.name}") logger.info(f"📊 Audio details: {len(audio_data)/sample_rate:.1f}s, {sample_rate}Hz") logger.warning("🔊 Using placeholder audio - Real TTS coming in future update") return temp_file.name except Exception as e: logger.error(f"❌ Critical error in audio generation: {str(e)}") logger.error(f"Exception type: {type(e).__name__}") # Last resort: create minimal audio file try: temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.wav') # Create 2 seconds of simple sine wave sample_rate = 22050 duration = 2.0 t = np.linspace(0, duration, int(sample_rate * duration), False) audio_data = 0.3 * np.sin(2 * np.pi * 440 * t) sf.write(temp_file.name, audio_data, samplerate=sample_rate) temp_file.close() logger.info(f"✅ Created fallback audio: {temp_file.name}") return temp_file.name except Exception as final_error: logger.error(f"❌ Even fallback audio failed: {final_error}") raise Exception(f"Complete TTS failure: {final_error}")