Spaces:
Runtime error
Runtime error
torch seems slow, bring back onnx
Browse files- app.py +61 -45
- requirements.txt +1 -3
app.py
CHANGED
|
@@ -1,54 +1,79 @@
|
|
| 1 |
import argparse
|
| 2 |
import glob
|
| 3 |
-
import
|
| 4 |
-
import os
|
| 5 |
import time
|
|
|
|
| 6 |
|
| 7 |
import gradio as gr
|
| 8 |
import numpy as np
|
| 9 |
-
import
|
| 10 |
-
|
| 11 |
-
import torch.nn.functional as F
|
| 12 |
import tqdm
|
|
|
|
|
|
|
| 13 |
|
| 14 |
import MIDI
|
| 15 |
-
from midi_model import MIDIModel
|
| 16 |
-
from midi_tokenizer import MIDITokenizer
|
| 17 |
from midi_synthesizer import synthesis
|
| 18 |
-
from
|
| 19 |
|
| 20 |
MAX_SEED = np.iinfo(np.int32).max
|
| 21 |
in_space = os.getenv("SYSTEM") == "spaces"
|
| 22 |
|
| 23 |
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
def generate(model, prompt=None, max_len=512, temp=1.0, top_p=0.98, top_k=20,
|
| 26 |
-
disable_patch_change=False, disable_control_change=False, disable_channels=None,
|
| 27 |
if disable_channels is not None:
|
| 28 |
disable_channels = [tokenizer.parameter_ids["channel"][c] for c in disable_channels]
|
| 29 |
else:
|
| 30 |
disable_channels = []
|
|
|
|
|
|
|
| 31 |
max_token_seq = tokenizer.max_token_seq
|
| 32 |
if prompt is None:
|
| 33 |
-
input_tensor =
|
| 34 |
input_tensor[0, 0] = tokenizer.bos_id # bos
|
| 35 |
else:
|
| 36 |
prompt = prompt[:, :max_token_seq]
|
| 37 |
if prompt.shape[-1] < max_token_seq:
|
| 38 |
prompt = np.pad(prompt, ((0, 0), (0, max_token_seq - prompt.shape[-1])),
|
| 39 |
mode="constant", constant_values=tokenizer.pad_id)
|
| 40 |
-
input_tensor =
|
| 41 |
-
input_tensor = input_tensor
|
| 42 |
cur_len = input_tensor.shape[1]
|
| 43 |
bar = tqdm.tqdm(desc="generating", total=max_len - cur_len, disable=in_space)
|
| 44 |
-
with bar
|
| 45 |
while cur_len < max_len:
|
| 46 |
end = False
|
| 47 |
-
hidden = model.
|
| 48 |
-
next_token_seq =
|
| 49 |
event_name = ""
|
| 50 |
for i in range(max_token_seq):
|
| 51 |
-
mask =
|
| 52 |
if i == 0:
|
| 53 |
mask_ids = list(tokenizer.event_ids.values()) + [tokenizer.eos_id]
|
| 54 |
if disable_patch_change:
|
|
@@ -62,9 +87,9 @@ def generate(model, prompt=None, max_len=512, temp=1.0, top_p=0.98, top_k=20,
|
|
| 62 |
if param_name == "channel":
|
| 63 |
mask_ids = [i for i in mask_ids if i not in disable_channels]
|
| 64 |
mask[mask_ids] = 1
|
| 65 |
-
logits = model.
|
| 66 |
-
scores =
|
| 67 |
-
sample =
|
| 68 |
if i == 0:
|
| 69 |
next_token_seq = sample
|
| 70 |
eid = sample.item()
|
|
@@ -73,17 +98,17 @@ def generate(model, prompt=None, max_len=512, temp=1.0, top_p=0.98, top_k=20,
|
|
| 73 |
break
|
| 74 |
event_name = tokenizer.id_events[eid]
|
| 75 |
else:
|
| 76 |
-
next_token_seq =
|
| 77 |
if len(tokenizer.events[event_name]) == i:
|
| 78 |
break
|
| 79 |
if next_token_seq.shape[1] < max_token_seq:
|
| 80 |
-
next_token_seq =
|
| 81 |
-
|
| 82 |
-
next_token_seq = next_token_seq
|
| 83 |
-
input_tensor =
|
| 84 |
cur_len += 1
|
| 85 |
bar.update(1)
|
| 86 |
-
yield next_token_seq.reshape(-1)
|
| 87 |
if end:
|
| 88 |
break
|
| 89 |
|
|
@@ -104,7 +129,7 @@ def run(model_name, tab, instruments, drum_kit, bpm, mid, midi_events, midi_opt,
|
|
| 104 |
max_len = gen_events
|
| 105 |
if seed_rand:
|
| 106 |
seed = np.random.randint(0, MAX_SEED)
|
| 107 |
-
generator =
|
| 108 |
disable_patch_change = False
|
| 109 |
disable_channels = None
|
| 110 |
if tab == 0:
|
|
@@ -135,16 +160,14 @@ def run(model_name, tab, instruments, drum_kit, bpm, mid, midi_events, midi_opt,
|
|
| 135 |
for token_seq in mid:
|
| 136 |
mid_seq.append(token_seq.tolist())
|
| 137 |
max_len += len(mid)
|
| 138 |
-
|
| 139 |
events = [tokenizer.tokens2event(tokens) for tokens in mid_seq]
|
| 140 |
init_msgs = [create_msg("visualizer_clear", None), create_msg("visualizer_append", events)]
|
| 141 |
t = time.time() + 1
|
| 142 |
yield mid_seq, None, None, seed, send_msgs(init_msgs)
|
| 143 |
model = models[model_name]
|
| 144 |
-
amp = device == "cuda"
|
| 145 |
midi_generator = generate(model, mid, max_len=max_len, temp=temp, top_p=top_p, top_k=top_k,
|
| 146 |
disable_patch_change=disable_patch_change, disable_control_change=not allow_cc,
|
| 147 |
-
disable_channels=disable_channels,
|
| 148 |
events = []
|
| 149 |
for i, token_seq in enumerate(midi_generator):
|
| 150 |
token_seq = token_seq.tolist()
|
|
@@ -222,21 +245,15 @@ if __name__ == "__main__":
|
|
| 222 |
"j-pop finetune model": ["skytnt/midi-model-ft", "jpop/"],
|
| 223 |
"touhou finetune model": ["skytnt/midi-model-ft", "touhou/"],
|
| 224 |
}
|
| 225 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 226 |
-
if device=="cuda": # flash attn
|
| 227 |
-
torch.backends.cuda.enable_mem_efficient_sdp(True)
|
| 228 |
-
torch.backends.cuda.enable_flash_sdp(True)
|
| 229 |
models = {}
|
| 230 |
tokenizer = MIDITokenizer()
|
|
|
|
| 231 |
for name, (repo_id, path) in models_info.items():
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
model.load_state_dict(state_dict, strict=False)
|
| 238 |
-
model.eval()
|
| 239 |
-
models[name] = model
|
| 240 |
|
| 241 |
load_javascript()
|
| 242 |
app = gr.Blocks()
|
|
@@ -248,8 +265,7 @@ if __name__ == "__main__":
|
|
| 248 |
"[Open In Colab]"
|
| 249 |
"(https://colab.research.google.com/github/SkyTNT/midi-model/blob/main/demo.ipynb)"
|
| 250 |
" for faster running and longer generation\n\n"
|
| 251 |
-
"**Update v1.2**: Optimise the tokenizer and dataset
|
| 252 |
-
f"Device: {device}"
|
| 253 |
)
|
| 254 |
js_msg = gr.Textbox(elem_id="msg_receiver", visible=False)
|
| 255 |
js_msg.change(None, [js_msg], [], js="""
|
|
@@ -319,4 +335,4 @@ if __name__ == "__main__":
|
|
| 319 |
[output_midi_seq, output_midi, output_audio, input_seed, js_msg],
|
| 320 |
concurrency_limit=3)
|
| 321 |
stop_btn.click(cancel_run, [output_midi_seq], [output_midi, output_audio, js_msg], cancels=run_event, queue=False)
|
| 322 |
-
app.launch(server_port=opt.port, share=opt.share, inbrowser=True)
|
|
|
|
| 1 |
import argparse
|
| 2 |
import glob
|
| 3 |
+
import os.path
|
|
|
|
| 4 |
import time
|
| 5 |
+
import uuid
|
| 6 |
|
| 7 |
import gradio as gr
|
| 8 |
import numpy as np
|
| 9 |
+
import onnxruntime as rt
|
|
|
|
|
|
|
| 10 |
import tqdm
|
| 11 |
+
import json
|
| 12 |
+
from huggingface_hub import hf_hub_download
|
| 13 |
|
| 14 |
import MIDI
|
|
|
|
|
|
|
| 15 |
from midi_synthesizer import synthesis
|
| 16 |
+
from midi_tokenizer import MIDITokenizer
|
| 17 |
|
| 18 |
MAX_SEED = np.iinfo(np.int32).max
|
| 19 |
in_space = os.getenv("SYSTEM") == "spaces"
|
| 20 |
|
| 21 |
|
| 22 |
+
def softmax(x, axis):
|
| 23 |
+
x_max = np.amax(x, axis=axis, keepdims=True)
|
| 24 |
+
exp_x_shifted = np.exp(x - x_max)
|
| 25 |
+
return exp_x_shifted / np.sum(exp_x_shifted, axis=axis, keepdims=True)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def sample_top_p_k(probs, p, k, generator=None):
|
| 29 |
+
if generator is None:
|
| 30 |
+
generator = np.random
|
| 31 |
+
probs_idx = np.argsort(-probs, axis=-1)
|
| 32 |
+
probs_sort = np.take_along_axis(probs, probs_idx, -1)
|
| 33 |
+
probs_sum = np.cumsum(probs_sort, axis=-1)
|
| 34 |
+
mask = probs_sum - probs_sort > p
|
| 35 |
+
probs_sort[mask] = 0.0
|
| 36 |
+
mask = np.zeros(probs_sort.shape[-1])
|
| 37 |
+
mask[:k] = 1
|
| 38 |
+
probs_sort = probs_sort * mask
|
| 39 |
+
probs_sort /= np.sum(probs_sort, axis=-1, keepdims=True)
|
| 40 |
+
shape = probs_sort.shape
|
| 41 |
+
probs_sort_flat = probs_sort.reshape(-1, shape[-1])
|
| 42 |
+
probs_idx_flat = probs_idx.reshape(-1, shape[-1])
|
| 43 |
+
next_token = np.stack([generator.choice(idxs, p=pvals) for pvals, idxs in zip(probs_sort_flat, probs_idx_flat)])
|
| 44 |
+
next_token = next_token.reshape(*shape[:-1])
|
| 45 |
+
return next_token
|
| 46 |
+
|
| 47 |
+
|
| 48 |
def generate(model, prompt=None, max_len=512, temp=1.0, top_p=0.98, top_k=20,
|
| 49 |
+
disable_patch_change=False, disable_control_change=False, disable_channels=None, generator=None):
|
| 50 |
if disable_channels is not None:
|
| 51 |
disable_channels = [tokenizer.parameter_ids["channel"][c] for c in disable_channels]
|
| 52 |
else:
|
| 53 |
disable_channels = []
|
| 54 |
+
if generator is None:
|
| 55 |
+
generator = np.random
|
| 56 |
max_token_seq = tokenizer.max_token_seq
|
| 57 |
if prompt is None:
|
| 58 |
+
input_tensor = np.full((1, max_token_seq), tokenizer.pad_id, dtype=np.int64)
|
| 59 |
input_tensor[0, 0] = tokenizer.bos_id # bos
|
| 60 |
else:
|
| 61 |
prompt = prompt[:, :max_token_seq]
|
| 62 |
if prompt.shape[-1] < max_token_seq:
|
| 63 |
prompt = np.pad(prompt, ((0, 0), (0, max_token_seq - prompt.shape[-1])),
|
| 64 |
mode="constant", constant_values=tokenizer.pad_id)
|
| 65 |
+
input_tensor = prompt
|
| 66 |
+
input_tensor = input_tensor[None, :, :]
|
| 67 |
cur_len = input_tensor.shape[1]
|
| 68 |
bar = tqdm.tqdm(desc="generating", total=max_len - cur_len, disable=in_space)
|
| 69 |
+
with bar:
|
| 70 |
while cur_len < max_len:
|
| 71 |
end = False
|
| 72 |
+
hidden = model[0].run(None, {'x': input_tensor})[0][:, -1]
|
| 73 |
+
next_token_seq = np.empty((1, 0), dtype=np.int64)
|
| 74 |
event_name = ""
|
| 75 |
for i in range(max_token_seq):
|
| 76 |
+
mask = np.zeros(tokenizer.vocab_size, dtype=np.int64)
|
| 77 |
if i == 0:
|
| 78 |
mask_ids = list(tokenizer.event_ids.values()) + [tokenizer.eos_id]
|
| 79 |
if disable_patch_change:
|
|
|
|
| 87 |
if param_name == "channel":
|
| 88 |
mask_ids = [i for i in mask_ids if i not in disable_channels]
|
| 89 |
mask[mask_ids] = 1
|
| 90 |
+
logits = model[1].run(None, {'x': next_token_seq, "hidden": hidden})[0][:, -1:]
|
| 91 |
+
scores = softmax(logits / temp, -1) * mask
|
| 92 |
+
sample = sample_top_p_k(scores, top_p, top_k, generator)
|
| 93 |
if i == 0:
|
| 94 |
next_token_seq = sample
|
| 95 |
eid = sample.item()
|
|
|
|
| 98 |
break
|
| 99 |
event_name = tokenizer.id_events[eid]
|
| 100 |
else:
|
| 101 |
+
next_token_seq = np.concatenate([next_token_seq, sample], axis=1)
|
| 102 |
if len(tokenizer.events[event_name]) == i:
|
| 103 |
break
|
| 104 |
if next_token_seq.shape[1] < max_token_seq:
|
| 105 |
+
next_token_seq = np.pad(next_token_seq, ((0, 0), (0, max_token_seq - next_token_seq.shape[-1])),
|
| 106 |
+
mode="constant", constant_values=tokenizer.pad_id)
|
| 107 |
+
next_token_seq = next_token_seq[None, :, :]
|
| 108 |
+
input_tensor = np.concatenate([input_tensor, next_token_seq], axis=1)
|
| 109 |
cur_len += 1
|
| 110 |
bar.update(1)
|
| 111 |
+
yield next_token_seq.reshape(-1)
|
| 112 |
if end:
|
| 113 |
break
|
| 114 |
|
|
|
|
| 129 |
max_len = gen_events
|
| 130 |
if seed_rand:
|
| 131 |
seed = np.random.randint(0, MAX_SEED)
|
| 132 |
+
generator = np.random.RandomState(seed)
|
| 133 |
disable_patch_change = False
|
| 134 |
disable_channels = None
|
| 135 |
if tab == 0:
|
|
|
|
| 160 |
for token_seq in mid:
|
| 161 |
mid_seq.append(token_seq.tolist())
|
| 162 |
max_len += len(mid)
|
|
|
|
| 163 |
events = [tokenizer.tokens2event(tokens) for tokens in mid_seq]
|
| 164 |
init_msgs = [create_msg("visualizer_clear", None), create_msg("visualizer_append", events)]
|
| 165 |
t = time.time() + 1
|
| 166 |
yield mid_seq, None, None, seed, send_msgs(init_msgs)
|
| 167 |
model = models[model_name]
|
|
|
|
| 168 |
midi_generator = generate(model, mid, max_len=max_len, temp=temp, top_p=top_p, top_k=top_k,
|
| 169 |
disable_patch_change=disable_patch_change, disable_control_change=not allow_cc,
|
| 170 |
+
disable_channels=disable_channels, generator=generator)
|
| 171 |
events = []
|
| 172 |
for i, token_seq in enumerate(midi_generator):
|
| 173 |
token_seq = token_seq.tolist()
|
|
|
|
| 245 |
"j-pop finetune model": ["skytnt/midi-model-ft", "jpop/"],
|
| 246 |
"touhou finetune model": ["skytnt/midi-model-ft", "touhou/"],
|
| 247 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
models = {}
|
| 249 |
tokenizer = MIDITokenizer()
|
| 250 |
+
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
|
| 251 |
for name, (repo_id, path) in models_info.items():
|
| 252 |
+
model_base_path = hf_hub_download_retry(repo_id=repo_id, filename=f"{path}onnx/model_base.onnx")
|
| 253 |
+
model_token_path = hf_hub_download_retry(repo_id=repo_id, filename=f"{path}onnx/model_token.onnx")
|
| 254 |
+
model_base = rt.InferenceSession(model_base_path, providers=providers)
|
| 255 |
+
model_token = rt.InferenceSession(model_token_path, providers=providers)
|
| 256 |
+
models[name] = [model_base, model_token]
|
|
|
|
|
|
|
|
|
|
| 257 |
|
| 258 |
load_javascript()
|
| 259 |
app = gr.Blocks()
|
|
|
|
| 265 |
"[Open In Colab]"
|
| 266 |
"(https://colab.research.google.com/github/SkyTNT/midi-model/blob/main/demo.ipynb)"
|
| 267 |
" for faster running and longer generation\n\n"
|
| 268 |
+
"**Update v1.2**: Optimise the tokenizer and dataset"
|
|
|
|
| 269 |
)
|
| 270 |
js_msg = gr.Textbox(elem_id="msg_receiver", visible=False)
|
| 271 |
js_msg.change(None, [js_msg], [], js="""
|
|
|
|
| 335 |
[output_midi_seq, output_midi, output_audio, input_seed, js_msg],
|
| 336 |
concurrency_limit=3)
|
| 337 |
stop_btn.click(cancel_run, [output_midi_seq], [output_midi, output_audio, js_msg], cancels=run_event, queue=False)
|
| 338 |
+
app.launch(server_port=opt.port, share=opt.share, inbrowser=True)
|
requirements.txt
CHANGED
|
@@ -1,8 +1,6 @@
|
|
| 1 |
-
--extra-index-url https://download.pytorch.org/whl/cu124
|
| 2 |
Pillow
|
| 3 |
numpy
|
| 4 |
-
|
| 5 |
-
transformers>=4.36
|
| 6 |
gradio==4.43.0
|
| 7 |
pyfluidsynth
|
| 8 |
tqdm
|
|
|
|
|
|
|
| 1 |
Pillow
|
| 2 |
numpy
|
| 3 |
+
onnxruntime-gpu
|
|
|
|
| 4 |
gradio==4.43.0
|
| 5 |
pyfluidsynth
|
| 6 |
tqdm
|