Spaces:
Runtime error
Runtime error
Update midi_model.py
Browse files- midi_model.py +151 -50
midi_model.py
CHANGED
|
@@ -7,22 +7,26 @@ import torch.nn as nn
|
|
| 7 |
import torch.nn.functional as F
|
| 8 |
import tqdm
|
| 9 |
from peft import PeftConfig, LoraModel, load_peft_weights, set_peft_model_state_dict
|
| 10 |
-
from transformers import LlamaModel,
|
|
|
|
|
|
|
| 11 |
|
| 12 |
from midi_tokenizer import MIDITokenizerV1, MIDITokenizerV2, MIDITokenizer
|
| 13 |
|
| 14 |
config_name_list = ["tv1-medium", "tv2-medium", "tv2o-medium", "tv2-large", "tv2o-large"]
|
| 15 |
|
| 16 |
-
|
| 17 |
class MIDIModelConfig(PretrainedConfig):
|
| 18 |
model_type = "midi_model"
|
| 19 |
|
| 20 |
def __init__(self,
|
| 21 |
tokenizer: Union[MIDITokenizerV1, MIDITokenizerV2, Dict]=None,
|
| 22 |
-
net_config: Union[LlamaConfig, Dict]=None,
|
| 23 |
-
net_token_config: Union[LlamaConfig, Dict]=None,
|
|
|
|
| 24 |
**kwargs):
|
| 25 |
super().__init__(**kwargs)
|
|
|
|
|
|
|
| 26 |
if tokenizer:
|
| 27 |
if isinstance(tokenizer, dict):
|
| 28 |
self.tokenizer = MIDITokenizer(tokenizer["version"])
|
|
@@ -31,52 +35,72 @@ class MIDIModelConfig(PretrainedConfig):
|
|
| 31 |
self.tokenizer = tokenizer
|
| 32 |
else:
|
| 33 |
self.tokenizer = MIDITokenizer()
|
|
|
|
| 34 |
if net_config:
|
| 35 |
if isinstance(net_config, dict):
|
| 36 |
-
self.net_config = LlamaConfig(**net_config)
|
| 37 |
else:
|
| 38 |
self.net_config = net_config
|
| 39 |
else:
|
| 40 |
-
self.net_config = LlamaConfig()
|
|
|
|
| 41 |
if net_token_config:
|
| 42 |
if isinstance(net_token_config, dict):
|
| 43 |
-
self.net_token_config = LlamaConfig(**net_token_config)
|
| 44 |
else:
|
| 45 |
self.net_token_config = net_token_config
|
| 46 |
else:
|
| 47 |
-
self.net_token_config = LlamaConfig()
|
|
|
|
| 48 |
self.n_embd = self.net_token_config.hidden_size
|
| 49 |
|
| 50 |
def to_dict(self) -> Dict[str, Any]:
|
| 51 |
d = super().to_dict()
|
| 52 |
d["tokenizer"] = self.tokenizer.to_dict()
|
|
|
|
| 53 |
return d
|
| 54 |
|
| 55 |
def __str__(self):
|
| 56 |
d = {
|
|
|
|
| 57 |
"net": self.net_config.to_json_string(use_diff=False),
|
| 58 |
"net_token": self.net_token_config.to_json_string(use_diff=False)
|
| 59 |
}
|
| 60 |
return json.dumps(d, indent=4)
|
| 61 |
|
| 62 |
@staticmethod
|
| 63 |
-
def get_config(tokenizer_ver="v2", optimise_midi=True, n_layer=12, n_head=16, n_embd=1024, n_inner=4096):
|
| 64 |
tokenizer = MIDITokenizer(tokenizer_ver)
|
| 65 |
tokenizer.set_optimise_midi(optimise_midi)
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
@staticmethod
|
| 79 |
-
def from_name(name="tv2o-medium"):
|
| 80 |
tv, size = name.split("-")
|
| 81 |
tv = tv[1:]
|
| 82 |
if tv[-1] == "o":
|
|
@@ -84,26 +108,45 @@ class MIDIModelConfig(PretrainedConfig):
|
|
| 84 |
tv = tv[:-1]
|
| 85 |
else:
|
| 86 |
o = False
|
|
|
|
| 87 |
if tv not in ["v1", "v2"]:
|
| 88 |
raise ValueError(f"Unknown tokenizer version {tv}")
|
|
|
|
| 89 |
if size == "medium":
|
| 90 |
-
return MIDIModelConfig.get_config(
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
elif size == "large":
|
| 93 |
-
return MIDIModelConfig.get_config(
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
else:
|
| 96 |
raise ValueError(f"Unknown model size {size}")
|
| 97 |
|
| 98 |
-
|
| 99 |
class MIDIModel(PreTrainedModel):
|
| 100 |
config_class = MIDIModelConfig
|
| 101 |
|
| 102 |
def __init__(self, config: MIDIModelConfig, *args, **kwargs):
|
| 103 |
super(MIDIModel, self).__init__(config, *args, **kwargs)
|
| 104 |
self.tokenizer = config.tokenizer
|
| 105 |
-
|
| 106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
self.lm_head = nn.Linear(config.n_embd, self.tokenizer.vocab_size, bias=False)
|
| 108 |
|
| 109 |
def load_merge_lora(self, model_id):
|
|
@@ -115,62 +158,97 @@ class MIDIModel(PreTrainedModel):
|
|
| 115 |
|
| 116 |
def forward_token(self, hidden_state=None, x=None, cache=None):
|
| 117 |
"""
|
| 118 |
-
|
| 119 |
:param hidden_state: (batch_size, n_embd)
|
| 120 |
:param x: (batch_size, token_sequence_length)
|
| 121 |
:param cache: Cache
|
| 122 |
:return: (batch_size, 1 + token_sequence_length, vocab_size)
|
| 123 |
"""
|
| 124 |
if hidden_state is not None:
|
| 125 |
-
#if you use cache, you don't need to pass in hidden_state
|
| 126 |
hidden_state = hidden_state.unsqueeze(1) # (batch_size, 1, n_embd)
|
| 127 |
if x is not None:
|
| 128 |
x = self.net_token.embed_tokens(x)
|
| 129 |
if hidden_state is not None:
|
| 130 |
x = torch.cat([hidden_state, x], dim=1)
|
| 131 |
hidden_state = x
|
| 132 |
-
hidden_state = self.net_token.forward(
|
| 133 |
-
|
| 134 |
-
|
|
|
|
|
|
|
| 135 |
return self.lm_head(hidden_state)
|
| 136 |
|
| 137 |
-
def forward(self, x, cache
|
| 138 |
"""
|
| 139 |
:param x: (batch_size, midi_sequence_length, token_sequence_length)
|
| 140 |
:param cache: Cache
|
| 141 |
:return: hidden (batch_size, midi_sequence_length, n_embd)
|
| 142 |
"""
|
| 143 |
-
|
| 144 |
-
# merge token sequence
|
| 145 |
x = self.net.embed_tokens(x)
|
| 146 |
x = x.sum(dim=-2)
|
| 147 |
-
x = self.net.forward(
|
| 148 |
-
|
| 149 |
-
|
|
|
|
|
|
|
| 150 |
return x.last_hidden_state
|
| 151 |
|
| 152 |
def sample_top_p_k(self, probs, p, k, generator=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
|
| 154 |
probs_sum = torch.cumsum(probs_sort, dim=-1)
|
| 155 |
mask = probs_sum - probs_sort > p
|
| 156 |
probs_sort[mask] = 0.0
|
|
|
|
| 157 |
mask = torch.zeros(probs_sort.shape[-1], device=probs_sort.device)
|
| 158 |
mask[:k] = 1
|
| 159 |
probs_sort = probs_sort * mask
|
|
|
|
| 160 |
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
|
| 161 |
shape = probs_sort.shape
|
| 162 |
-
|
| 163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
next_token = torch.gather(probs_idx, -1, next_token).reshape(*shape[:-1])
|
| 165 |
return next_token
|
| 166 |
|
| 167 |
@torch.inference_mode()
|
| 168 |
def generate(self, prompt=None, batch_size=1, max_len=512, temp=1.0, top_p=0.98, top_k=20, generator=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
tokenizer = self.tokenizer
|
| 170 |
max_token_seq = tokenizer.max_token_seq
|
|
|
|
|
|
|
| 171 |
if prompt is None:
|
| 172 |
-
input_tensor = torch.full(
|
| 173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
input_tensor = input_tensor.unsqueeze(0)
|
| 175 |
input_tensor = torch.cat([input_tensor] * batch_size, dim=0)
|
| 176 |
else:
|
|
@@ -181,16 +259,22 @@ class MIDIModel(PreTrainedModel):
|
|
| 181 |
prompt = np.repeat(prompt, repeats=batch_size, axis=0)
|
| 182 |
elif len(prompt.shape) != 3 or prompt.shape[0] != batch_size:
|
| 183 |
raise ValueError(f"invalid shape for prompt, {prompt.shape}")
|
|
|
|
| 184 |
prompt = prompt[..., :max_token_seq]
|
| 185 |
if prompt.shape[-1] < max_token_seq:
|
| 186 |
-
prompt = np.pad(
|
| 187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
input_tensor = torch.from_numpy(prompt).to(dtype=torch.long, device=self.device)
|
| 189 |
|
| 190 |
cur_len = input_tensor.shape[1]
|
| 191 |
bar = tqdm.tqdm(desc="generating", total=max_len - cur_len)
|
| 192 |
cache1 = DynamicCache()
|
| 193 |
past_len = 0
|
|
|
|
| 194 |
with bar:
|
| 195 |
while cur_len < max_len:
|
| 196 |
end = [False] * batch_size
|
|
@@ -198,12 +282,19 @@ class MIDIModel(PreTrainedModel):
|
|
| 198 |
next_token_seq = None
|
| 199 |
event_names = [""] * batch_size
|
| 200 |
cache2 = DynamicCache()
|
|
|
|
| 201 |
for i in range(max_token_seq):
|
| 202 |
-
mask = torch.zeros(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
for b in range(batch_size):
|
| 204 |
if end[b]:
|
| 205 |
mask[b, tokenizer.pad_id] = 1
|
| 206 |
continue
|
|
|
|
| 207 |
if i == 0:
|
| 208 |
mask[b, list(tokenizer.event_ids.values()) + [tokenizer.eos_id]] = 1
|
| 209 |
else:
|
|
@@ -212,15 +303,19 @@ class MIDIModel(PreTrainedModel):
|
|
| 212 |
mask[b, tokenizer.pad_id] = 1
|
| 213 |
continue
|
| 214 |
mask[b, tokenizer.parameter_ids[param_names[i - 1]]] = 1
|
|
|
|
| 215 |
mask = mask.unsqueeze(1)
|
| 216 |
x = next_token_seq
|
|
|
|
| 217 |
if i != 0:
|
| 218 |
-
#
|
| 219 |
hidden = None
|
| 220 |
x = x[:, -1:]
|
|
|
|
| 221 |
logits = self.forward_token(hidden, x, cache=cache2)[:, -1:]
|
| 222 |
scores = torch.softmax(logits / temp, dim=-1) * mask
|
| 223 |
samples = self.sample_top_p_k(scores, top_p, top_k, generator=generator)
|
|
|
|
| 224 |
if i == 0:
|
| 225 |
next_token_seq = samples
|
| 226 |
for b in range(batch_size):
|
|
@@ -237,8 +332,13 @@ class MIDIModel(PreTrainedModel):
|
|
| 237 |
break
|
| 238 |
|
| 239 |
if next_token_seq.shape[1] < max_token_seq:
|
| 240 |
-
next_token_seq = F.pad(
|
| 241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 242 |
next_token_seq = next_token_seq.unsqueeze(1)
|
| 243 |
input_tensor = torch.cat([input_tensor, next_token_seq], dim=1)
|
| 244 |
past_len = cur_len
|
|
@@ -247,4 +347,5 @@ class MIDIModel(PreTrainedModel):
|
|
| 247 |
|
| 248 |
if all(end):
|
| 249 |
break
|
| 250 |
-
|
|
|
|
|
|
| 7 |
import torch.nn.functional as F
|
| 8 |
import tqdm
|
| 9 |
from peft import PeftConfig, LoraModel, load_peft_weights, set_peft_model_state_dict
|
| 10 |
+
from transformers import LlamaModel, Phi3Model
|
| 11 |
+
from transformers import LlamaConfig, Phi3Config
|
| 12 |
+
from transformers import DynamicCache, PretrainedConfig, PreTrainedModel
|
| 13 |
|
| 14 |
from midi_tokenizer import MIDITokenizerV1, MIDITokenizerV2, MIDITokenizer
|
| 15 |
|
| 16 |
config_name_list = ["tv1-medium", "tv2-medium", "tv2o-medium", "tv2-large", "tv2o-large"]
|
| 17 |
|
|
|
|
| 18 |
class MIDIModelConfig(PretrainedConfig):
|
| 19 |
model_type = "midi_model"
|
| 20 |
|
| 21 |
def __init__(self,
|
| 22 |
tokenizer: Union[MIDITokenizerV1, MIDITokenizerV2, Dict]=None,
|
| 23 |
+
net_config: Union[LlamaConfig, Phi3Config, Dict]=None,
|
| 24 |
+
net_token_config: Union[LlamaConfig, Phi3Config, Dict]=None,
|
| 25 |
+
model_type: str = "llama",
|
| 26 |
**kwargs):
|
| 27 |
super().__init__(**kwargs)
|
| 28 |
+
self.model_type = model_type
|
| 29 |
+
|
| 30 |
if tokenizer:
|
| 31 |
if isinstance(tokenizer, dict):
|
| 32 |
self.tokenizer = MIDITokenizer(tokenizer["version"])
|
|
|
|
| 35 |
self.tokenizer = tokenizer
|
| 36 |
else:
|
| 37 |
self.tokenizer = MIDITokenizer()
|
| 38 |
+
|
| 39 |
if net_config:
|
| 40 |
if isinstance(net_config, dict):
|
| 41 |
+
self.net_config = LlamaConfig(**net_config) if model_type == "llama" else Phi3Config(**net_config)
|
| 42 |
else:
|
| 43 |
self.net_config = net_config
|
| 44 |
else:
|
| 45 |
+
self.net_config = LlamaConfig() if model_type == "llama" else Phi3Config()
|
| 46 |
+
|
| 47 |
if net_token_config:
|
| 48 |
if isinstance(net_token_config, dict):
|
| 49 |
+
self.net_token_config = LlamaConfig(**net_token_config) if model_type == "llama" else Phi3Config(**net_token_config)
|
| 50 |
else:
|
| 51 |
self.net_token_config = net_token_config
|
| 52 |
else:
|
| 53 |
+
self.net_token_config = LlamaConfig() if model_type == "llama" else Phi3Config()
|
| 54 |
+
|
| 55 |
self.n_embd = self.net_token_config.hidden_size
|
| 56 |
|
| 57 |
def to_dict(self) -> Dict[str, Any]:
|
| 58 |
d = super().to_dict()
|
| 59 |
d["tokenizer"] = self.tokenizer.to_dict()
|
| 60 |
+
d["model_type"] = self.model_type
|
| 61 |
return d
|
| 62 |
|
| 63 |
def __str__(self):
|
| 64 |
d = {
|
| 65 |
+
"model_type": self.model_type,
|
| 66 |
"net": self.net_config.to_json_string(use_diff=False),
|
| 67 |
"net_token": self.net_token_config.to_json_string(use_diff=False)
|
| 68 |
}
|
| 69 |
return json.dumps(d, indent=4)
|
| 70 |
|
| 71 |
@staticmethod
|
| 72 |
+
def get_config(tokenizer_ver="v2", optimise_midi=True, n_layer=12, n_head=16, n_embd=1024, n_inner=4096, model_type="llama"):
|
| 73 |
tokenizer = MIDITokenizer(tokenizer_ver)
|
| 74 |
tokenizer.set_optimise_midi(optimise_midi)
|
| 75 |
+
|
| 76 |
+
config_class = LlamaConfig if model_type == "llama" else Phi3Config
|
| 77 |
+
|
| 78 |
+
net_config = config_class(
|
| 79 |
+
vocab_size=tokenizer.vocab_size,
|
| 80 |
+
hidden_size=n_embd,
|
| 81 |
+
num_attention_heads=n_head,
|
| 82 |
+
num_hidden_layers=n_layer,
|
| 83 |
+
intermediate_size=n_inner,
|
| 84 |
+
pad_token_id=tokenizer.pad_id,
|
| 85 |
+
max_position_embeddings=4096,
|
| 86 |
+
use_cache=False
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
net_token_config = config_class(
|
| 90 |
+
vocab_size=tokenizer.vocab_size,
|
| 91 |
+
hidden_size=n_embd,
|
| 92 |
+
num_attention_heads=n_head // 4,
|
| 93 |
+
num_hidden_layers=n_layer // 4,
|
| 94 |
+
intermediate_size=n_inner // 4,
|
| 95 |
+
pad_token_id=tokenizer.pad_id,
|
| 96 |
+
max_position_embeddings=4096,
|
| 97 |
+
use_cache=False
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
return MIDIModelConfig(tokenizer, net_config, net_token_config, model_type=model_type)
|
| 101 |
|
| 102 |
@staticmethod
|
| 103 |
+
def from_name(name="tv2o-medium", model_type="llama"):
|
| 104 |
tv, size = name.split("-")
|
| 105 |
tv = tv[1:]
|
| 106 |
if tv[-1] == "o":
|
|
|
|
| 108 |
tv = tv[:-1]
|
| 109 |
else:
|
| 110 |
o = False
|
| 111 |
+
|
| 112 |
if tv not in ["v1", "v2"]:
|
| 113 |
raise ValueError(f"Unknown tokenizer version {tv}")
|
| 114 |
+
|
| 115 |
if size == "medium":
|
| 116 |
+
return MIDIModelConfig.get_config(
|
| 117 |
+
tokenizer_ver=tv,
|
| 118 |
+
optimise_midi=o,
|
| 119 |
+
n_layer=12,
|
| 120 |
+
n_head=16,
|
| 121 |
+
n_embd=1024,
|
| 122 |
+
n_inner=4096,
|
| 123 |
+
model_type=model_type
|
| 124 |
+
)
|
| 125 |
elif size == "large":
|
| 126 |
+
return MIDIModelConfig.get_config(
|
| 127 |
+
tokenizer_ver=tv,
|
| 128 |
+
optimise_midi=o,
|
| 129 |
+
n_layer=24,
|
| 130 |
+
n_head=16,
|
| 131 |
+
n_embd=1024,
|
| 132 |
+
n_inner=4096,
|
| 133 |
+
model_type=model_type
|
| 134 |
+
)
|
| 135 |
else:
|
| 136 |
raise ValueError(f"Unknown model size {size}")
|
| 137 |
|
|
|
|
| 138 |
class MIDIModel(PreTrainedModel):
|
| 139 |
config_class = MIDIModelConfig
|
| 140 |
|
| 141 |
def __init__(self, config: MIDIModelConfig, *args, **kwargs):
|
| 142 |
super(MIDIModel, self).__init__(config, *args, **kwargs)
|
| 143 |
self.tokenizer = config.tokenizer
|
| 144 |
+
|
| 145 |
+
# Initialize the appropriate model type
|
| 146 |
+
model_class = LlamaModel if config.model_type == "llama" else Phi3Model
|
| 147 |
+
self.net = model_class(config.net_config)
|
| 148 |
+
self.net_token = model_class(config.net_token_config)
|
| 149 |
+
|
| 150 |
self.lm_head = nn.Linear(config.n_embd, self.tokenizer.vocab_size, bias=False)
|
| 151 |
|
| 152 |
def load_merge_lora(self, model_id):
|
|
|
|
| 158 |
|
| 159 |
def forward_token(self, hidden_state=None, x=None, cache=None):
|
| 160 |
"""
|
|
|
|
| 161 |
:param hidden_state: (batch_size, n_embd)
|
| 162 |
:param x: (batch_size, token_sequence_length)
|
| 163 |
:param cache: Cache
|
| 164 |
:return: (batch_size, 1 + token_sequence_length, vocab_size)
|
| 165 |
"""
|
| 166 |
if hidden_state is not None:
|
|
|
|
| 167 |
hidden_state = hidden_state.unsqueeze(1) # (batch_size, 1, n_embd)
|
| 168 |
if x is not None:
|
| 169 |
x = self.net_token.embed_tokens(x)
|
| 170 |
if hidden_state is not None:
|
| 171 |
x = torch.cat([hidden_state, x], dim=1)
|
| 172 |
hidden_state = x
|
| 173 |
+
hidden_state = self.net_token.forward(
|
| 174 |
+
inputs_embeds=hidden_state,
|
| 175 |
+
past_key_values=cache,
|
| 176 |
+
use_cache=cache is not None
|
| 177 |
+
).last_hidden_state
|
| 178 |
return self.lm_head(hidden_state)
|
| 179 |
|
| 180 |
+
def forward(self, x, cache=None):
|
| 181 |
"""
|
| 182 |
:param x: (batch_size, midi_sequence_length, token_sequence_length)
|
| 183 |
:param cache: Cache
|
| 184 |
:return: hidden (batch_size, midi_sequence_length, n_embd)
|
| 185 |
"""
|
|
|
|
|
|
|
| 186 |
x = self.net.embed_tokens(x)
|
| 187 |
x = x.sum(dim=-2)
|
| 188 |
+
x = self.net.forward(
|
| 189 |
+
inputs_embeds=x,
|
| 190 |
+
past_key_values=cache,
|
| 191 |
+
use_cache=cache is not None
|
| 192 |
+
)
|
| 193 |
return x.last_hidden_state
|
| 194 |
|
| 195 |
def sample_top_p_k(self, probs, p, k, generator=None):
|
| 196 |
+
"""
|
| 197 |
+
Sample from top-p and top-k filtered probability distribution
|
| 198 |
+
|
| 199 |
+
:param probs: probability distribution
|
| 200 |
+
:param p: top-p threshold
|
| 201 |
+
:param k: top-k threshold
|
| 202 |
+
:param generator: random number generator
|
| 203 |
+
:return: sampled token indices
|
| 204 |
+
"""
|
| 205 |
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
|
| 206 |
probs_sum = torch.cumsum(probs_sort, dim=-1)
|
| 207 |
mask = probs_sum - probs_sort > p
|
| 208 |
probs_sort[mask] = 0.0
|
| 209 |
+
|
| 210 |
mask = torch.zeros(probs_sort.shape[-1], device=probs_sort.device)
|
| 211 |
mask[:k] = 1
|
| 212 |
probs_sort = probs_sort * mask
|
| 213 |
+
|
| 214 |
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
|
| 215 |
shape = probs_sort.shape
|
| 216 |
+
|
| 217 |
+
next_token = torch.multinomial(
|
| 218 |
+
probs_sort.reshape(-1, shape[-1]),
|
| 219 |
+
num_samples=1,
|
| 220 |
+
generator=generator
|
| 221 |
+
).reshape(*shape[:-1], 1)
|
| 222 |
+
|
| 223 |
next_token = torch.gather(probs_idx, -1, next_token).reshape(*shape[:-1])
|
| 224 |
return next_token
|
| 225 |
|
| 226 |
@torch.inference_mode()
|
| 227 |
def generate(self, prompt=None, batch_size=1, max_len=512, temp=1.0, top_p=0.98, top_k=20, generator=None):
|
| 228 |
+
"""
|
| 229 |
+
Generate MIDI sequences
|
| 230 |
+
|
| 231 |
+
:param prompt: optional input prompt
|
| 232 |
+
:param batch_size: number of sequences to generate
|
| 233 |
+
:param max_len: maximum sequence length
|
| 234 |
+
:param temp: temperature for sampling
|
| 235 |
+
:param top_p: top-p threshold for sampling
|
| 236 |
+
:param top_k: top-k threshold for sampling
|
| 237 |
+
:param generator: random number generator
|
| 238 |
+
:return: generated sequences
|
| 239 |
+
"""
|
| 240 |
tokenizer = self.tokenizer
|
| 241 |
max_token_seq = tokenizer.max_token_seq
|
| 242 |
+
|
| 243 |
+
# Initialize input tensor
|
| 244 |
if prompt is None:
|
| 245 |
+
input_tensor = torch.full(
|
| 246 |
+
(1, max_token_seq),
|
| 247 |
+
tokenizer.pad_id,
|
| 248 |
+
dtype=torch.long,
|
| 249 |
+
device=self.device
|
| 250 |
+
)
|
| 251 |
+
input_tensor[0, 0] = tokenizer.bos_id
|
| 252 |
input_tensor = input_tensor.unsqueeze(0)
|
| 253 |
input_tensor = torch.cat([input_tensor] * batch_size, dim=0)
|
| 254 |
else:
|
|
|
|
| 259 |
prompt = np.repeat(prompt, repeats=batch_size, axis=0)
|
| 260 |
elif len(prompt.shape) != 3 or prompt.shape[0] != batch_size:
|
| 261 |
raise ValueError(f"invalid shape for prompt, {prompt.shape}")
|
| 262 |
+
|
| 263 |
prompt = prompt[..., :max_token_seq]
|
| 264 |
if prompt.shape[-1] < max_token_seq:
|
| 265 |
+
prompt = np.pad(
|
| 266 |
+
prompt,
|
| 267 |
+
((0, 0), (0, 0), (0, max_token_seq - prompt.shape[-1])),
|
| 268 |
+
mode="constant",
|
| 269 |
+
constant_values=tokenizer.pad_id
|
| 270 |
+
)
|
| 271 |
input_tensor = torch.from_numpy(prompt).to(dtype=torch.long, device=self.device)
|
| 272 |
|
| 273 |
cur_len = input_tensor.shape[1]
|
| 274 |
bar = tqdm.tqdm(desc="generating", total=max_len - cur_len)
|
| 275 |
cache1 = DynamicCache()
|
| 276 |
past_len = 0
|
| 277 |
+
|
| 278 |
with bar:
|
| 279 |
while cur_len < max_len:
|
| 280 |
end = [False] * batch_size
|
|
|
|
| 282 |
next_token_seq = None
|
| 283 |
event_names = [""] * batch_size
|
| 284 |
cache2 = DynamicCache()
|
| 285 |
+
|
| 286 |
for i in range(max_token_seq):
|
| 287 |
+
mask = torch.zeros(
|
| 288 |
+
(batch_size, tokenizer.vocab_size),
|
| 289 |
+
dtype=torch.int64,
|
| 290 |
+
device=self.device
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
for b in range(batch_size):
|
| 294 |
if end[b]:
|
| 295 |
mask[b, tokenizer.pad_id] = 1
|
| 296 |
continue
|
| 297 |
+
|
| 298 |
if i == 0:
|
| 299 |
mask[b, list(tokenizer.event_ids.values()) + [tokenizer.eos_id]] = 1
|
| 300 |
else:
|
|
|
|
| 303 |
mask[b, tokenizer.pad_id] = 1
|
| 304 |
continue
|
| 305 |
mask[b, tokenizer.parameter_ids[param_names[i - 1]]] = 1
|
| 306 |
+
|
| 307 |
mask = mask.unsqueeze(1)
|
| 308 |
x = next_token_seq
|
| 309 |
+
|
| 310 |
if i != 0:
|
| 311 |
+
# Use cache for non-first tokens
|
| 312 |
hidden = None
|
| 313 |
x = x[:, -1:]
|
| 314 |
+
|
| 315 |
logits = self.forward_token(hidden, x, cache=cache2)[:, -1:]
|
| 316 |
scores = torch.softmax(logits / temp, dim=-1) * mask
|
| 317 |
samples = self.sample_top_p_k(scores, top_p, top_k, generator=generator)
|
| 318 |
+
|
| 319 |
if i == 0:
|
| 320 |
next_token_seq = samples
|
| 321 |
for b in range(batch_size):
|
|
|
|
| 332 |
break
|
| 333 |
|
| 334 |
if next_token_seq.shape[1] < max_token_seq:
|
| 335 |
+
next_token_seq = F.pad(
|
| 336 |
+
next_token_seq,
|
| 337 |
+
(0, max_token_seq - next_token_seq.shape[1]),
|
| 338 |
+
"constant",
|
| 339 |
+
value=tokenizer.pad_id
|
| 340 |
+
)
|
| 341 |
+
|
| 342 |
next_token_seq = next_token_seq.unsqueeze(1)
|
| 343 |
input_tensor = torch.cat([input_tensor, next_token_seq], dim=1)
|
| 344 |
past_len = cur_len
|
|
|
|
| 347 |
|
| 348 |
if all(end):
|
| 349 |
break
|
| 350 |
+
|
| 351 |
+
return input_tensor.cpu().numpy()
|