feat: implement universal image loader to support various input types and update preprocessing functions accordingly
Browse files
app.py
CHANGED
|
@@ -5,6 +5,9 @@ import numpy as np
|
|
| 5 |
import os
|
| 6 |
import time
|
| 7 |
import logging
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
# Assuming these are available from your utils and agents directories
|
| 10 |
# You might need to adjust paths or copy these functions/classes if they are not directly importable.
|
|
@@ -66,16 +69,57 @@ CLASS_NAMES = {
|
|
| 66 |
"model_7": ['Fake', 'Real'],
|
| 67 |
}
|
| 68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
def preprocess_resize_256(image):
|
|
|
|
| 70 |
if image.mode != 'RGB':
|
| 71 |
image = image.convert('RGB')
|
| 72 |
return transforms.Resize((256, 256))(image)
|
| 73 |
|
| 74 |
def preprocess_resize_224(image):
|
|
|
|
| 75 |
if image.mode != 'RGB':
|
| 76 |
image = image.convert('RGB')
|
| 77 |
return transforms.Resize((224, 224))(image)
|
| 78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
def postprocess_pipeline(prediction, class_names):
|
| 80 |
# Assumes HuggingFace pipeline output
|
| 81 |
return {pred['label']: pred['score'] for pred in prediction}
|
|
@@ -109,10 +153,6 @@ register_model_with_metadata(
|
|
| 109 |
|
| 110 |
feature_extractor_3 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_3"], device=device)
|
| 111 |
model_3 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_3"]).to(device)
|
| 112 |
-
def preprocess_256(image):
|
| 113 |
-
if image.mode != 'RGB':
|
| 114 |
-
image = image.convert('RGB')
|
| 115 |
-
return transforms.Resize((256, 256))(image)
|
| 116 |
def postprocess_logits_model3(outputs, class_names):
|
| 117 |
logits = outputs.logits.cpu().numpy()[0]
|
| 118 |
probabilities = softmax(logits)
|
|
@@ -171,8 +211,7 @@ register_model_with_metadata(
|
|
| 171 |
)
|
| 172 |
|
| 173 |
def preprocess_simple_prediction(image):
|
| 174 |
-
|
| 175 |
-
return image
|
| 176 |
|
| 177 |
def postprocess_simple_prediction(result, class_names):
|
| 178 |
scores = {name: 0.0 for name in class_names}
|
|
@@ -184,10 +223,15 @@ def postprocess_simple_prediction(result, class_names):
|
|
| 184 |
return scores
|
| 185 |
|
| 186 |
def simple_prediction(img):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
client = Client("aiwithoutborders-xyz/OpenSight-Community-Forensics-Preview")
|
| 188 |
result = client.predict(
|
| 189 |
-
|
| 190 |
-
|
| 191 |
)
|
| 192 |
return result
|
| 193 |
|
|
|
|
| 5 |
import os
|
| 6 |
import time
|
| 7 |
import logging
|
| 8 |
+
import requests
|
| 9 |
+
import io
|
| 10 |
+
import tempfile
|
| 11 |
|
| 12 |
# Assuming these are available from your utils and agents directories
|
| 13 |
# You might need to adjust paths or copy these functions/classes if they are not directly importable.
|
|
|
|
| 69 |
"model_7": ['Fake', 'Real'],
|
| 70 |
}
|
| 71 |
|
| 72 |
+
# Universal image loader
|
| 73 |
+
def universal_image_loader(img_input):
|
| 74 |
+
"""
|
| 75 |
+
Accepts a PIL Image, NumPy array, file path, or URL.
|
| 76 |
+
Returns a PIL Image.
|
| 77 |
+
"""
|
| 78 |
+
if isinstance(img_input, Image.Image):
|
| 79 |
+
return img_input
|
| 80 |
+
if isinstance(img_input, np.ndarray):
|
| 81 |
+
return Image.fromarray(img_input)
|
| 82 |
+
if isinstance(img_input, str):
|
| 83 |
+
if img_input.startswith('http://') or img_input.startswith('https://'):
|
| 84 |
+
try:
|
| 85 |
+
response = requests.get(img_input)
|
| 86 |
+
response.raise_for_status()
|
| 87 |
+
return Image.open(io.BytesIO(response.content)).convert('RGB')
|
| 88 |
+
except Exception as e:
|
| 89 |
+
logger.error(f"Failed to load image from URL: {img_input} | Error: {e}")
|
| 90 |
+
raise
|
| 91 |
+
elif os.path.exists(img_input):
|
| 92 |
+
try:
|
| 93 |
+
return Image.open(img_input).convert('RGB')
|
| 94 |
+
except Exception as e:
|
| 95 |
+
logger.error(f"Failed to load image from file: {img_input} | Error: {e}")
|
| 96 |
+
raise
|
| 97 |
+
else:
|
| 98 |
+
logger.error(f"String input is not a valid file path or URL: {img_input}")
|
| 99 |
+
raise ValueError(f"Invalid image input: {img_input}")
|
| 100 |
+
logger.error(f"Unsupported image input type: {type(img_input)}")
|
| 101 |
+
raise TypeError(f"Unsupported image input type: {type(img_input)}")
|
| 102 |
+
|
| 103 |
+
# Update all preprocessors to use universal_image_loader
|
| 104 |
+
|
| 105 |
def preprocess_resize_256(image):
|
| 106 |
+
image = universal_image_loader(image)
|
| 107 |
if image.mode != 'RGB':
|
| 108 |
image = image.convert('RGB')
|
| 109 |
return transforms.Resize((256, 256))(image)
|
| 110 |
|
| 111 |
def preprocess_resize_224(image):
|
| 112 |
+
image = universal_image_loader(image)
|
| 113 |
if image.mode != 'RGB':
|
| 114 |
image = image.convert('RGB')
|
| 115 |
return transforms.Resize((224, 224))(image)
|
| 116 |
|
| 117 |
+
def preprocess_256(image):
|
| 118 |
+
image = universal_image_loader(image)
|
| 119 |
+
if image.mode != 'RGB':
|
| 120 |
+
image = image.convert('RGB')
|
| 121 |
+
return transforms.Resize((256, 256))(image)
|
| 122 |
+
|
| 123 |
def postprocess_pipeline(prediction, class_names):
|
| 124 |
# Assumes HuggingFace pipeline output
|
| 125 |
return {pred['label']: pred['score'] for pred in prediction}
|
|
|
|
| 153 |
|
| 154 |
feature_extractor_3 = AutoFeatureExtractor.from_pretrained(MODEL_PATHS["model_3"], device=device)
|
| 155 |
model_3 = AutoModelForImageClassification.from_pretrained(MODEL_PATHS["model_3"]).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
def postprocess_logits_model3(outputs, class_names):
|
| 157 |
logits = outputs.logits.cpu().numpy()[0]
|
| 158 |
probabilities = softmax(logits)
|
|
|
|
| 211 |
)
|
| 212 |
|
| 213 |
def preprocess_simple_prediction(image):
|
| 214 |
+
return universal_image_loader(image)
|
|
|
|
| 215 |
|
| 216 |
def postprocess_simple_prediction(result, class_names):
|
| 217 |
scores = {name: 0.0 for name in class_names}
|
|
|
|
| 223 |
return scores
|
| 224 |
|
| 225 |
def simple_prediction(img):
|
| 226 |
+
img = universal_image_loader(img)
|
| 227 |
+
# Save PIL image to a temporary file
|
| 228 |
+
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as tmp:
|
| 229 |
+
img.save(tmp, format="JPEG")
|
| 230 |
+
tmp_path = tmp.name
|
| 231 |
client = Client("aiwithoutborders-xyz/OpenSight-Community-Forensics-Preview")
|
| 232 |
result = client.predict(
|
| 233 |
+
input_image=tmp_path,
|
| 234 |
+
api_name="/simple_predict"
|
| 235 |
)
|
| 236 |
return result
|
| 237 |
|