Update app.py
Browse files
app.py
CHANGED
|
@@ -8,6 +8,7 @@ import pandas as pd
|
|
| 8 |
import warnings
|
| 9 |
import math
|
| 10 |
import numpy as np
|
|
|
|
| 11 |
|
| 12 |
# Suppress warnings
|
| 13 |
warnings.filterwarnings("ignore", category=UserWarning, message="Using a slow image processor as `use_fast` is unset")
|
|
@@ -35,6 +36,7 @@ model_3 = AutoModelForImageClassification.from_pretrained(models[0]).to(device)
|
|
| 35 |
feature_extractor_4 = AutoFeatureExtractor.from_pretrained(models[1])
|
| 36 |
model_4 = AutoModelForImageClassification.from_pretrained(models[1]).to(device)
|
| 37 |
|
|
|
|
| 38 |
# Define class names for all models
|
| 39 |
class_names_1 = ['artificial', 'real']
|
| 40 |
class_names_2 = ['AI Image', 'Real Image']
|
|
@@ -155,13 +157,20 @@ def predict_image(img, confidence_threshold):
|
|
| 155 |
label_4 = "Uncertain Classification"
|
| 156 |
except Exception as e:
|
| 157 |
label_4 = f"Error: {str(e)}"
|
| 158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
# Combine results
|
| 160 |
combined_results = {
|
| 161 |
"SwinV2": label_1,
|
| 162 |
"AI-vs-Real-Image-Detection": label_2,
|
| 163 |
"Organika/sdxl-detector": label_3,
|
| 164 |
-
"cmckinle/sdxl-flux-detector": label_4
|
|
|
|
| 165 |
}
|
| 166 |
|
| 167 |
return combined_results
|
|
|
|
| 8 |
import warnings
|
| 9 |
import math
|
| 10 |
import numpy as np
|
| 11 |
+
from tensorflow.keras.models import load_model
|
| 12 |
|
| 13 |
# Suppress warnings
|
| 14 |
warnings.filterwarnings("ignore", category=UserWarning, message="Using a slow image processor as `use_fast` is unset")
|
|
|
|
| 36 |
feature_extractor_4 = AutoFeatureExtractor.from_pretrained(models[1])
|
| 37 |
model_4 = AutoModelForImageClassification.from_pretrained(models[1]).to(device)
|
| 38 |
|
| 39 |
+
model_5 = load_model("large_model_3lakh_v1.h5")
|
| 40 |
# Define class names for all models
|
| 41 |
class_names_1 = ['artificial', 'real']
|
| 42 |
class_names_2 = ['AI Image', 'Real Image']
|
|
|
|
| 157 |
label_4 = "Uncertain Classification"
|
| 158 |
except Exception as e:
|
| 159 |
label_4 = f"Error: {str(e)}"
|
| 160 |
+
|
| 161 |
+
try:
|
| 162 |
+
pred = model.predict(np.expand_dims(img_pil / 255, 0))
|
| 163 |
+
result_5 = {
|
| 164 |
+
'AI': pred[0],
|
| 165 |
+
'Real': pred[1]
|
| 166 |
+
}
|
| 167 |
# Combine results
|
| 168 |
combined_results = {
|
| 169 |
"SwinV2": label_1,
|
| 170 |
"AI-vs-Real-Image-Detection": label_2,
|
| 171 |
"Organika/sdxl-detector": label_3,
|
| 172 |
+
"cmckinle/sdxl-flux-detector": label_4,
|
| 173 |
+
"ALSv": label_5
|
| 174 |
}
|
| 175 |
|
| 176 |
return combined_results
|