Update app.py
Browse files
app.py
CHANGED
|
@@ -4,13 +4,9 @@ from transformers import pipeline, AutoImageProcessor, Swinv2ForImageClassificat
|
|
| 4 |
from torchvision import transforms
|
| 5 |
import torch
|
| 6 |
from PIL import Image
|
| 7 |
-
import pandas as pd
|
| 8 |
-
import warnings
|
| 9 |
-
import math
|
| 10 |
import numpy as np
|
| 11 |
from utils.goat import call_inference
|
| 12 |
import io
|
| 13 |
-
import sys
|
| 14 |
|
| 15 |
# Suppress warnings
|
| 16 |
warnings.filterwarnings("ignore", category=UserWarning, message="Using a slow image processor as `use_fast` is unset")
|
|
@@ -157,11 +153,10 @@ def predict_image(img, confidence_threshold):
|
|
| 157 |
label_4 = f"Error: {str(e)}"
|
| 158 |
|
| 159 |
try:
|
| 160 |
-
|
| 161 |
-
response5_raw = call_inference(
|
| 162 |
-
|
| 163 |
-
response5
|
| 164 |
-
|
| 165 |
label_5 = f"Result: {response5}"
|
| 166 |
except Exception as e:
|
| 167 |
label_5 = f"Error: {str(e)}"
|
|
@@ -191,43 +186,37 @@ with gr.Blocks() as iface:
|
|
| 191 |
results_html = gr.HTML(label="Model Predictions")
|
| 192 |
outputs = [image_output, results_html]
|
| 193 |
|
| 194 |
-
gr.Button("Predict").click(fn=
|
| 195 |
|
| 196 |
-
# Define a function to generate the HTML content
|
| 197 |
def generate_results_html(results):
|
| 198 |
-
html_content = """
|
| 199 |
<link href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css" rel="stylesheet">
|
| 200 |
<div class="container">
|
| 201 |
<div class="row mt-4">
|
| 202 |
<div class="col">
|
| 203 |
<h5>SwinV2/detect</h5>
|
| 204 |
-
<p>{
|
| 205 |
</div>
|
| 206 |
<div class="col">
|
| 207 |
<h5>ViT/AI-vs-Real</h5>
|
| 208 |
-
<p>{
|
| 209 |
</div>
|
| 210 |
<div class="col">
|
| 211 |
<h5>Swin/SDXL</h5>
|
| 212 |
-
<p>{
|
| 213 |
</div>
|
| 214 |
<div class="col">
|
| 215 |
<h5>Swin/SDXL-FLUX</h5>
|
| 216 |
-
<p>{
|
| 217 |
</div>
|
| 218 |
<div class="col">
|
| 219 |
<h5>GOAT</h5>
|
| 220 |
-
<p>{GOAT}</p>
|
| 221 |
</div>
|
| 222 |
</div>
|
| 223 |
</div>
|
| 224 |
-
"""
|
| 225 |
-
SwinV2_detect=results.get("SwinV2/detect", "N/A"),
|
| 226 |
-
ViT_AI_vs_Real=results.get("ViT/AI-vs-Real", "N/A"),
|
| 227 |
-
Swin_SDXL=results.get("Swin/SDXL", "N/A"),
|
| 228 |
-
Swin_SDXL_FLUX=results.get("Swin/SDXL-FLUX", "N/A"),
|
| 229 |
-
GOAT=results.get("GOAT", "N/A")
|
| 230 |
-
)
|
| 231 |
return html_content
|
| 232 |
|
| 233 |
# Modify the predict_image function to return the HTML content
|
|
@@ -236,8 +225,5 @@ with gr.Blocks() as iface:
|
|
| 236 |
html_content = generate_results_html(results)
|
| 237 |
return img_pil, html_content
|
| 238 |
|
| 239 |
-
# Update the button click to use the new function
|
| 240 |
-
gr.Button("Predict").click(fn=predict_image_with_html, inputs=inputs, outputs=outputs)
|
| 241 |
-
|
| 242 |
# Launch the interface
|
| 243 |
iface.launch()
|
|
|
|
| 4 |
from torchvision import transforms
|
| 5 |
import torch
|
| 6 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
| 7 |
import numpy as np
|
| 8 |
from utils.goat import call_inference
|
| 9 |
import io
|
|
|
|
| 10 |
|
| 11 |
# Suppress warnings
|
| 12 |
warnings.filterwarnings("ignore", category=UserWarning, message="Using a slow image processor as `use_fast` is unset")
|
|
|
|
| 153 |
label_4 = f"Error: {str(e)}"
|
| 154 |
|
| 155 |
try:
|
| 156 |
+
img_bytes = convert_pil_to_bytes(img_pil)
|
| 157 |
+
response5_raw = call_inference(img_bytes)
|
| 158 |
+
response5 = response5_raw.json()
|
| 159 |
+
print(response5)
|
|
|
|
| 160 |
label_5 = f"Result: {response5}"
|
| 161 |
except Exception as e:
|
| 162 |
label_5 = f"Error: {str(e)}"
|
|
|
|
| 186 |
results_html = gr.HTML(label="Model Predictions")
|
| 187 |
outputs = [image_output, results_html]
|
| 188 |
|
| 189 |
+
gr.Button("Predict").click(fn=predict_image_with_html, inputs=inputs, outputs=outputs)
|
| 190 |
|
| 191 |
+
# Define a function to generate the HTML content
|
| 192 |
def generate_results_html(results):
|
| 193 |
+
html_content = f"""
|
| 194 |
<link href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css" rel="stylesheet">
|
| 195 |
<div class="container">
|
| 196 |
<div class="row mt-4">
|
| 197 |
<div class="col">
|
| 198 |
<h5>SwinV2/detect</h5>
|
| 199 |
+
<p>{results.get("SwinV2/detect", "N/A")}</p>
|
| 200 |
</div>
|
| 201 |
<div class="col">
|
| 202 |
<h5>ViT/AI-vs-Real</h5>
|
| 203 |
+
<p>{results.get("ViT/AI-vs-Real", "N/A")}</p>
|
| 204 |
</div>
|
| 205 |
<div class="col">
|
| 206 |
<h5>Swin/SDXL</h5>
|
| 207 |
+
<p>{results.get("Swin/SDXL", "N/A")}</p>
|
| 208 |
</div>
|
| 209 |
<div class="col">
|
| 210 |
<h5>Swin/SDXL-FLUX</h5>
|
| 211 |
+
<p>{results.get("Swin/SDXL-FLUX", "N/A")}</p>
|
| 212 |
</div>
|
| 213 |
<div class="col">
|
| 214 |
<h5>GOAT</h5>
|
| 215 |
+
<p>{results.get("GOAT", "N/A")}</p>
|
| 216 |
</div>
|
| 217 |
</div>
|
| 218 |
</div>
|
| 219 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
return html_content
|
| 221 |
|
| 222 |
# Modify the predict_image function to return the HTML content
|
|
|
|
| 225 |
html_content = generate_results_html(results)
|
| 226 |
return img_pil, html_content
|
| 227 |
|
|
|
|
|
|
|
|
|
|
| 228 |
# Launch the interface
|
| 229 |
iface.launch()
|