🐛 fix(image):
Browse files- correct typo in 'ViT-base Classifer' to 'ViT-base Classifier'
- rename model_3 and model_4 feature extractor variable names for uniformity
change the redundant print pattern for debug in model images wiith feature extractor in predict api
feature_extractor_3 to model_3 in 【GD LOVE】 function monitor for bug excess unexpected error output
feature_extractor_4 to model_4
map header value variables for neural networking endoument pattern fix
app.py
CHANGED
|
@@ -84,6 +84,7 @@ def predict_with_model(img_pil, clf, class_names, confidence_threshold, model_na
|
|
| 84 |
return label, result_output
|
| 85 |
|
| 86 |
@spaces.GPU(duration=10)
|
|
|
|
| 87 |
def predict_image(img, confidence_threshold):
|
| 88 |
if not isinstance(img, Image.Image):
|
| 89 |
raise ValueError(f"Expected a PIL Image, but got {type(img)}")
|
|
@@ -95,9 +96,9 @@ def predict_image(img, confidence_threshold):
|
|
| 95 |
img_pilvits = transforms.Resize((224, 224))(img_pil)
|
| 96 |
|
| 97 |
label_1, result_1output = predict_with_model(img_pil, clf_1, CLASS_NAMES["model_1"], confidence_threshold, "SwinV2-base", 1)
|
| 98 |
-
label_2, result_2output = predict_with_model(img_pilvits, clf_2, CLASS_NAMES["model_2"], confidence_threshold, "ViT-base
|
| 99 |
-
label_3, result_3output = predict_with_model(img_pil,
|
| 100 |
-
label_4, result_4output = predict_with_model(img_pil,
|
| 101 |
label_5, result_5output = predict_with_model(img_pilvits, clf_5, CLASS_NAMES["model_5"], confidence_threshold, "ViT-base Newcomer", 5)
|
| 102 |
label_5b, result_5boutput = predict_with_model(img_pilvits, clf_5b, CLASS_NAMES["model_5b"], confidence_threshold, "ViT-base Newcomer", 6)
|
| 103 |
|
|
@@ -109,12 +110,10 @@ def predict_image(img, confidence_threshold):
|
|
| 109 |
"prithivMLmods": label_5,
|
| 110 |
"prithivMLmods-2-22": label_5b
|
| 111 |
}
|
| 112 |
-
print(combined_results)
|
| 113 |
|
| 114 |
combined_outputs = [result_1output, result_2output, result_3output, result_4output, result_5output, result_5boutput]
|
| 115 |
return img_pil, combined_outputs
|
| 116 |
|
| 117 |
-
|
| 118 |
# Define a function to generate the HTML content
|
| 119 |
# Define a function to generate the HTML content
|
| 120 |
def generate_results_html(results):
|
|
|
|
| 84 |
return label, result_output
|
| 85 |
|
| 86 |
@spaces.GPU(duration=10)
|
| 87 |
+
# app.py
|
| 88 |
def predict_image(img, confidence_threshold):
|
| 89 |
if not isinstance(img, Image.Image):
|
| 90 |
raise ValueError(f"Expected a PIL Image, but got {type(img)}")
|
|
|
|
| 96 |
img_pilvits = transforms.Resize((224, 224))(img_pil)
|
| 97 |
|
| 98 |
label_1, result_1output = predict_with_model(img_pil, clf_1, CLASS_NAMES["model_1"], confidence_threshold, "SwinV2-base", 1)
|
| 99 |
+
label_2, result_2output = predict_with_model(img_pilvits, clf_2, CLASS_NAMES["model_2"], confidence_threshold, "ViT-base Classifier", 2)
|
| 100 |
+
label_3, result_3output = predict_with_model(img_pil, model_3, CLASS_NAMES["model_3"], confidence_threshold, "SDXL-Trained", 3)
|
| 101 |
+
label_4, result_4output = predict_with_model(img_pil, model_4, CLASS_NAMES["model_4"], confidence_threshold, "SDXL + FLUX", 4)
|
| 102 |
label_5, result_5output = predict_with_model(img_pilvits, clf_5, CLASS_NAMES["model_5"], confidence_threshold, "ViT-base Newcomer", 5)
|
| 103 |
label_5b, result_5boutput = predict_with_model(img_pilvits, clf_5b, CLASS_NAMES["model_5b"], confidence_threshold, "ViT-base Newcomer", 6)
|
| 104 |
|
|
|
|
| 110 |
"prithivMLmods": label_5,
|
| 111 |
"prithivMLmods-2-22": label_5b
|
| 112 |
}
|
|
|
|
| 113 |
|
| 114 |
combined_outputs = [result_1output, result_2output, result_3output, result_4output, result_5output, result_5boutput]
|
| 115 |
return img_pil, combined_outputs
|
| 116 |
|
|
|
|
| 117 |
# Define a function to generate the HTML content
|
| 118 |
# Define a function to generate the HTML content
|
| 119 |
def generate_results_html(results):
|