test
Browse files
app.py
CHANGED
|
@@ -14,6 +14,7 @@ from dotenv import load_dotenv
|
|
| 14 |
import concurrent.futures
|
| 15 |
import ast
|
| 16 |
import torch
|
|
|
|
| 17 |
|
| 18 |
from utils.utils import softmax, augment_image, preprocess_resize_256, preprocess_resize_224, postprocess_pipeline, postprocess_logits, postprocess_binary_output, to_float_scalar, infer_gradio_api, preprocess_gradio_api, postprocess_gradio_api
|
| 19 |
from utils.onnx_helpers import preprocess_onnx_input, postprocess_onnx_output, infer_onnx_model
|
|
@@ -416,6 +417,7 @@ detection_model_eval_playground = gr.Interface(
|
|
| 416 |
),
|
| 417 |
gr.JSON(label="Raw Model Results", visible=False),
|
| 418 |
gr.Markdown(label="Consensus", value="")
|
|
|
|
| 419 |
],
|
| 420 |
title="Multi-Model Ensemble + Agentic Coordinated Deepfake Detection (Paper in Progress)",
|
| 421 |
description="The detection of AI-generated images has entered a critical inflection point. While existing solutions struggle with outdated datasets and inflated claims, our approach prioritizes agility, community collaboration, and an offensive approach to deepfake detection.",
|
|
|
|
| 14 |
import concurrent.futures
|
| 15 |
import ast
|
| 16 |
import torch
|
| 17 |
+
from gradio_log import Log
|
| 18 |
|
| 19 |
from utils.utils import softmax, augment_image, preprocess_resize_256, preprocess_resize_224, postprocess_pipeline, postprocess_logits, postprocess_binary_output, to_float_scalar, infer_gradio_api, preprocess_gradio_api, postprocess_gradio_api
|
| 20 |
from utils.onnx_helpers import preprocess_onnx_input, postprocess_onnx_output, infer_onnx_model
|
|
|
|
| 417 |
),
|
| 418 |
gr.JSON(label="Raw Model Results", visible=False),
|
| 419 |
gr.Markdown(label="Consensus", value="")
|
| 420 |
+
Log(anomaly_detection_results, dark=True, xterm_font_size=12)
|
| 421 |
],
|
| 422 |
title="Multi-Model Ensemble + Agentic Coordinated Deepfake Detection (Paper in Progress)",
|
| 423 |
description="The detection of AI-generated images has entered a critical inflection point. While existing solutions struggle with outdated datasets and inflated claims, our approach prioritizes agility, community collaboration, and an offensive approach to deepfake detection.",
|