feat: enhance image handling by ensuring input is a PIL Image and updating forensic image logging
Browse files- app_mcp.py +11 -1
- utils/ela.py +2 -1
- utils/hf_logger.py +18 -2
app_mcp.py
CHANGED
|
@@ -261,6 +261,16 @@ def get_consensus_label(results):
|
|
| 261 |
# Update predict_image_with_json to return consensus label
|
| 262 |
|
| 263 |
def predict_image_with_json(img, confidence_threshold, augment_methods, rotate_degrees, noise_level, sharpen_strength):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
# Initialize agents
|
| 265 |
monitor_agent = EnsembleMonitorAgent()
|
| 266 |
weight_manager = ModelWeightManager()
|
|
@@ -537,4 +547,4 @@ with gr.Blocks(css="#post-gallery { overflow: hidden !important;} .grid-wrap{ ov
|
|
| 537 |
|
| 538 |
# --- MCP-Ready Launch ---
|
| 539 |
if __name__ == "__main__":
|
| 540 |
-
demo.launch(mcp_server=True)
|
|
|
|
| 261 |
# Update predict_image_with_json to return consensus label
|
| 262 |
|
| 263 |
def predict_image_with_json(img, confidence_threshold, augment_methods, rotate_degrees, noise_level, sharpen_strength):
|
| 264 |
+
# Ensure img is a PIL Image (if it's not already)
|
| 265 |
+
if not isinstance(img, Image.Image):
|
| 266 |
+
try:
|
| 267 |
+
# If it's a numpy array, convert it
|
| 268 |
+
img = Image.fromarray(img)
|
| 269 |
+
except Exception as e:
|
| 270 |
+
logger.error(f"Error converting input image to PIL: {e}")
|
| 271 |
+
# If conversion fails, it's a critical error for the whole process
|
| 272 |
+
raise ValueError("Input image could not be converted to PIL Image.")
|
| 273 |
+
|
| 274 |
# Initialize agents
|
| 275 |
monitor_agent = EnsembleMonitorAgent()
|
| 276 |
weight_manager = ModelWeightManager()
|
|
|
|
| 547 |
|
| 548 |
# --- MCP-Ready Launch ---
|
| 549 |
if __name__ == "__main__":
|
| 550 |
+
demo.launch(share=True, mcp_server=True)
|
utils/ela.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import numpy as np
|
| 2 |
import cv2 as cv
|
| 3 |
from time import time
|
|
|
|
| 4 |
|
| 5 |
def compress_jpg(image, quality):
|
| 6 |
"""Compress image using JPEG compression."""
|
|
@@ -60,4 +61,4 @@ def genELA(img, quality=75, scale=50, contrast=20, linear=False, grayscale=False
|
|
| 60 |
if grayscale:
|
| 61 |
ela = desaturate(ela)
|
| 62 |
|
| 63 |
-
return ela
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
import cv2 as cv
|
| 3 |
from time import time
|
| 4 |
+
from PIL import Image
|
| 5 |
|
| 6 |
def compress_jpg(image, quality):
|
| 7 |
"""Compress image using JPEG compression."""
|
|
|
|
| 61 |
if grayscale:
|
| 62 |
ela = desaturate(ela)
|
| 63 |
|
| 64 |
+
return Image.fromarray(ela)
|
utils/hf_logger.py
CHANGED
|
@@ -13,6 +13,10 @@ HF_DATASET_NAME = "aiwithoutborders-xyz/degentic_rd0" # TODO: Replace with your
|
|
| 13 |
|
| 14 |
def _pil_to_base64(image: Image.Image) -> str:
|
| 15 |
"""Converts a PIL Image to a base64 string."""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
buffered = io.BytesIO()
|
| 17 |
# Ensure image is in RGB mode before saving as JPEG
|
| 18 |
if image.mode != 'RGB':
|
|
@@ -56,7 +60,19 @@ def log_inference_data(
|
|
| 56 |
|
| 57 |
# Convert PIL Images to base64 strings for storage
|
| 58 |
original_image_b64 = _pil_to_base64(original_image)
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
new_entry = {
|
| 62 |
"timestamp": datetime.datetime.now().isoformat(),
|
|
@@ -64,7 +80,7 @@ def log_inference_data(
|
|
| 64 |
"inference_request": inference_params,
|
| 65 |
"model_predictions": model_predictions,
|
| 66 |
"ensemble_output": ensemble_output,
|
| 67 |
-
"forensic_outputs": forensic_images_b64,
|
| 68 |
"agent_monitoring_data": agent_monitoring_data,
|
| 69 |
"human_feedback": human_feedback if human_feedback is not None else {}
|
| 70 |
}
|
|
|
|
| 13 |
|
| 14 |
def _pil_to_base64(image: Image.Image) -> str:
|
| 15 |
"""Converts a PIL Image to a base64 string."""
|
| 16 |
+
# Explicitly check if the input is a PIL Image
|
| 17 |
+
if not isinstance(image, Image.Image):
|
| 18 |
+
raise TypeError(f"Expected a PIL Image, but received type: {type(image)}")
|
| 19 |
+
|
| 20 |
buffered = io.BytesIO()
|
| 21 |
# Ensure image is in RGB mode before saving as JPEG
|
| 22 |
if image.mode != 'RGB':
|
|
|
|
| 60 |
|
| 61 |
# Convert PIL Images to base64 strings for storage
|
| 62 |
original_image_b64 = _pil_to_base64(original_image)
|
| 63 |
+
|
| 64 |
+
forensic_images_b64 = []
|
| 65 |
+
for img_item in forensic_images:
|
| 66 |
+
if img_item is not None:
|
| 67 |
+
if not isinstance(img_item, Image.Image):
|
| 68 |
+
try:
|
| 69 |
+
img_item = Image.fromarray(img_item)
|
| 70 |
+
except Exception as e:
|
| 71 |
+
logger.error(f"Error converting forensic image to PIL for base64 encoding: {e}")
|
| 72 |
+
continue # Skip this image if conversion fails
|
| 73 |
+
|
| 74 |
+
# Now img_item should be a PIL Image, safe to pass to _pil_to_base64
|
| 75 |
+
forensic_images_b64.append(_pil_to_base64(img_item))
|
| 76 |
|
| 77 |
new_entry = {
|
| 78 |
"timestamp": datetime.datetime.now().isoformat(),
|
|
|
|
| 80 |
"inference_request": inference_params,
|
| 81 |
"model_predictions": model_predictions,
|
| 82 |
"ensemble_output": ensemble_output,
|
| 83 |
+
"forensic_outputs": forensic_images_b64, # List of base64 image strings
|
| 84 |
"agent_monitoring_data": agent_monitoring_data,
|
| 85 |
"human_feedback": human_feedback if human_feedback is not None else {}
|
| 86 |
}
|