File size: 16,743 Bytes
2a8ed16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
"""
utils.py
Helper functions for image postprocessing, including EXIF removal, noise addition,
color correction, and Fourier spectrum matching.
"""
import os
import re
from PIL import Image, ImageOps
import numpy as np
try:
import cv2
_HAS_CV2 = True
except Exception:
cv2 = None
_HAS_CV2 = False
from scipy.ndimage import gaussian_filter1d
def remove_exif_pil(img: Image.Image) -> Image.Image:
data = img.tobytes()
new = Image.frombytes(img.mode, img.size, data)
return new
def add_gaussian_noise(img_arr: np.ndarray, std_frac=0.02, seed=None) -> np.ndarray:
if seed is not None:
np.random.seed(seed)
std = std_frac * 255.0
noise = np.random.normal(loc=0.0, scale=std, size=img_arr.shape)
out = img_arr.astype(np.float32) + noise
out = np.clip(out, 0, 255).astype(np.uint8)
return out
def clahe_color_correction(img_arr: np.ndarray, clip_limit=2.0, tile_grid_size=(8,8)) -> np.ndarray:
if _HAS_CV2:
lab = cv2.cvtColor(img_arr, cv2.COLOR_RGB2LAB)
l, a, b = cv2.split(lab)
clahe = cv2.createCLAHE(clipLimit=clip_limit, tileGridSize=tile_grid_size)
l2 = clahe.apply(l)
lab2 = cv2.merge((l2, a, b))
out = cv2.cvtColor(lab2, cv2.COLOR_LAB2RGB)
return out
else:
pil = Image.fromarray(img_arr)
channels = pil.split()
new_ch = []
for ch in channels:
eq = ImageOps.equalize(ch)
new_ch.append(eq)
merged = Image.merge('RGB', new_ch)
return np.array(merged)
def randomized_perturbation(img_arr: np.ndarray, magnitude_frac=0.008, seed=None) -> np.ndarray:
if seed is not None:
np.random.seed(seed)
mag = magnitude_frac * 255.0
perturb = np.random.uniform(low=-mag, high=mag, size=img_arr.shape)
out = img_arr.astype(np.float32) + perturb
out = np.clip(out, 0, 255).astype(np.uint8)
return out
def radial_profile(mag: np.ndarray, center=None, nbins=None):
h, w = mag.shape
if center is None:
cy, cx = h // 2, w // 2
else:
cy, cx = center
if nbins is None:
nbins = int(max(h, w) / 2)
nbins = max(1, int(nbins))
y = np.arange(h) - cy
x = np.arange(w) - cx
X, Y = np.meshgrid(x, y)
R = np.sqrt(X * X + Y * Y)
Rmax = R.max()
if Rmax <= 0:
Rnorm = R
else:
Rnorm = R / (Rmax + 1e-12)
Rnorm = np.minimum(Rnorm, 1.0 - 1e-12)
bin_edges = np.linspace(0.0, 1.0, nbins + 1)
bin_idx = np.digitize(Rnorm.ravel(), bin_edges) - 1
bin_idx = np.clip(bin_idx, 0, nbins - 1)
sums = np.bincount(bin_idx, weights=mag.ravel(), minlength=nbins)
counts = np.bincount(bin_idx, minlength=nbins)
radial_mean = np.zeros(nbins, dtype=np.float64)
nonzero = counts > 0
radial_mean[nonzero] = sums[nonzero] / counts[nonzero]
bin_centers = 0.5 * (bin_edges[:-1] + bin_edges[1:])
return bin_centers, radial_mean
def fourier_match_spectrum(img_arr: np.ndarray,
ref_img_arr: np.ndarray = None,
mode='auto',
alpha=1.0,
cutoff=0.25,
strength=0.9,
randomness=0.05,
phase_perturb=0.08,
radial_smooth=5,
seed=None):
if seed is not None:
rng = np.random.default_rng(seed)
else:
rng = np.random.default_rng()
h, w = img_arr.shape[:2]
cy, cx = h // 2, w // 2
nbins = max(8, int(max(h, w) / 2))
if mode == 'auto':
mode = 'ref' if ref_img_arr is not None else 'model'
bin_centers_src = np.linspace(0.0, 1.0, nbins)
model_radial = None
if mode == 'model':
eps = 1e-8
model_radial = (1.0 / (bin_centers_src + eps)) ** (alpha / 2.0)
lf = max(1, nbins // 8)
model_radial = model_radial / (np.median(model_radial[:lf]) + 1e-12)
model_radial = gaussian_filter1d(model_radial, sigma=max(1, radial_smooth))
ref_radial = None
ref_bin_centers = None
if mode == 'ref' and ref_img_arr is not None:
if ref_img_arr.shape[0] != h or ref_img_arr.shape[1] != w:
ref_img = Image.fromarray(ref_img_arr).resize((w, h), resample=Image.BICUBIC)
ref_img_arr = np.array(ref_img)
ref_gray = np.mean(ref_img_arr.astype(np.float32), axis=2) if ref_img_arr.ndim == 3 else ref_img_arr.astype(np.float32)
Fref = np.fft.fftshift(np.fft.fft2(ref_gray))
Mref = np.abs(Fref)
ref_bin_centers, ref_radial = radial_profile(Mref, center=(h // 2, w // 2), nbins=nbins)
ref_radial = gaussian_filter1d(ref_radial, sigma=max(1, radial_smooth))
out = np.zeros_like(img_arr, dtype=np.float32)
y = np.linspace(-1, 1, h, endpoint=False)[:, None]
x = np.linspace(-1, 1, w, endpoint=False)[None, :]
r = np.sqrt(x * x + y * y)
r = np.clip(r, 0.0, 1.0 - 1e-6)
for c in range(img_arr.shape[2]):
channel = img_arr[:, :, c].astype(np.float32)
F = np.fft.fft2(channel)
Fshift = np.fft.fftshift(F)
mag = np.abs(Fshift)
phase = np.angle(Fshift)
bin_centers_src_calc, src_radial = radial_profile(mag, center=(h // 2, w // 2), nbins=nbins)
src_radial = gaussian_filter1d(src_radial, sigma=max(1, radial_smooth))
bin_centers_src = bin_centers_src_calc
if mode == 'ref' and ref_radial is not None:
ref_interp = np.interp(bin_centers_src, ref_bin_centers, ref_radial)
eps = 1e-8
ratio = (ref_interp + eps) / (src_radial + eps)
desired_radial = src_radial * ratio
elif mode == 'model' and model_radial is not None:
lf = max(1, nbins // 8)
scale = (np.median(src_radial[:lf]) + 1e-12) / (np.median(model_radial[:lf]) + 1e-12)
desired_radial = model_radial * scale
else:
desired_radial = src_radial.copy()
eps = 1e-8
multiplier_1d = (desired_radial + eps) / (src_radial + eps)
multiplier_1d = np.clip(multiplier_1d, 0.2, 5.0)
mult_2d = np.interp(r.ravel(), bin_centers_src, multiplier_1d).reshape(h, w)
edge = 0.05 + 0.02 * (1.0 - cutoff) if 'cutoff' in globals() else 0.05
edge = max(edge, 1e-6)
weight = np.where(r <= 0.25, 1.0,
np.where(r <= 0.25 + edge,
0.5 * (1 + np.cos(np.pi * (r - 0.25) / edge)),
0.0))
final_multiplier = 1.0 + (mult_2d - 1.0) * (weight * strength)
if randomness and randomness > 0.0:
noise = rng.normal(loc=1.0, scale=randomness, size=final_multiplier.shape)
final_multiplier *= (1.0 + (noise - 1.0) * weight)
mag2 = mag * final_multiplier
if phase_perturb and phase_perturb > 0.0:
phase_sigma = phase_perturb * np.clip((r - 0.25) / (1.0 - 0.25 + 1e-6), 0.0, 1.0)
phase_noise = rng.standard_normal(size=phase_sigma.shape) * phase_sigma
phase2 = phase + phase_noise
else:
phase2 = phase
Fshift2 = mag2 * np.exp(1j * phase2)
F_ishift = np.fft.ifftshift(Fshift2)
img_back = np.fft.ifft2(F_ishift)
img_back = np.real(img_back)
blended = (1.0 - strength) * channel + strength * img_back
out[:, :, c] = blended
out = np.clip(out, 0, 255).astype(np.uint8)
return out
def auto_white_balance_ref(img_arr: np.ndarray, ref_img_arr: np.ndarray = None) -> np.ndarray:
"""
Auto white-balance correction using a reference image.
If ref_img_arr is None, uses a gray-world assumption instead.
"""
img = img_arr.astype(np.float32)
if ref_img_arr is not None:
ref = ref_img_arr.astype(np.float32)
ref_mean = ref.reshape(-1, 3).mean(axis=0)
else:
# Gray-world assumption: target is neutral gray
ref_mean = np.array([128.0, 128.0, 128.0], dtype=np.float32)
img_mean = img.reshape(-1, 3).mean(axis=0)
# Avoid divide-by-zero
eps = 1e-6
scale = (ref_mean + eps) / (img_mean + eps)
corrected = img * scale
corrected = np.clip(corrected, 0, 255).astype(np.uint8)
return corrected
def apply_1d_lut(img_arr: np.ndarray, lut: np.ndarray, strength: float = 1.0) -> np.ndarray:
"""
Apply a 1D LUT to an image.
- img_arr: HxWx3 uint8
- lut: either shape (256,) (applied equally to all channels), (256,3) (per-channel),
or (N,) / (N,3) (interpolated across [0..255])
- strength: 0..1 blending between original and LUT result
Returns uint8 array.
"""
if img_arr.ndim != 3 or img_arr.shape[2] != 3:
raise ValueError("apply_1d_lut expects an HxWx3 image array")
# Normalize indices 0..255
arr = img_arr.astype(np.float32)
# Prepare LUT as float in 0..255 range if necessary
lut_arr = np.array(lut, dtype=np.float32)
# If single channel LUT (N,) expand to three channels
if lut_arr.ndim == 1:
lut_arr = np.stack([lut_arr, lut_arr, lut_arr], axis=1) # (N,3)
if lut_arr.shape[1] != 3:
raise ValueError("1D LUT must have shape (N,) or (N,3)")
# Build index positions in source LUT space (0..255)
N = lut_arr.shape[0]
src_positions = np.linspace(0, 255, N)
# Flatten and interpolate per channel
out = np.empty_like(arr)
for c in range(3):
channel = arr[..., c].ravel()
mapped = np.interp(channel, src_positions, lut_arr[:, c])
out[..., c] = mapped.reshape(arr.shape[0], arr.shape[1])
out = np.clip(out, 0, 255).astype(np.uint8)
if strength >= 1.0:
return out
else:
blended = ((1.0 - strength) * img_arr.astype(np.float32) + strength * out.astype(np.float32))
return np.clip(blended, 0, 255).astype(np.uint8)
def _trilinear_sample_lut(img_float: np.ndarray, lut: np.ndarray) -> np.ndarray:
"""
Vectorized trilinear sampling of 3D LUT.
- img_float: HxWx3 floats in [0,1]
- lut: SxSxS x 3 floats in [0,1]
Returns HxWx3 floats in [0,1]
"""
S = lut.shape[0]
if lut.shape[0] != lut.shape[1] or lut.shape[1] != lut.shape[2]:
raise ValueError("3D LUT must be cubic (SxSxSx3)")
# map [0,1] -> [0, S-1]
idx = img_float * (S - 1)
r_idx = idx[..., 0]
g_idx = idx[..., 1]
b_idx = idx[..., 2]
r0 = np.floor(r_idx).astype(np.int32)
g0 = np.floor(g_idx).astype(np.int32)
b0 = np.floor(b_idx).astype(np.int32)
r1 = np.clip(r0 + 1, 0, S - 1)
g1 = np.clip(g0 + 1, 0, S - 1)
b1 = np.clip(b0 + 1, 0, S - 1)
dr = (r_idx - r0)[..., None]
dg = (g_idx - g0)[..., None]
db = (b_idx - b0)[..., None]
# gather 8 corners: c000 ... c111
c000 = lut[r0, g0, b0]
c001 = lut[r0, g0, b1]
c010 = lut[r0, g1, b0]
c011 = lut[r0, g1, b1]
c100 = lut[r1, g0, b0]
c101 = lut[r1, g0, b1]
c110 = lut[r1, g1, b0]
c111 = lut[r1, g1, b1]
# interpolate along b
c00 = c000 * (1 - db) + c001 * db
c01 = c010 * (1 - db) + c011 * db
c10 = c100 * (1 - db) + c101 * db
c11 = c110 * (1 - db) + c111 * db
# interpolate along g
c0 = c00 * (1 - dg) + c01 * dg
c1 = c10 * (1 - dg) + c11 * dg
# interpolate along r
c = c0 * (1 - dr) + c1 * dr
return c # float in same range as lut (expected [0,1])
def apply_3d_lut(img_arr: np.ndarray, lut3d: np.ndarray, strength: float = 1.0) -> np.ndarray:
"""
Apply a 3D LUT to the image.
- img_arr: HxWx3 uint8
- lut3d: SxSxSx3 float (expected range 0..1)
- strength: blending 0..1
Returns uint8 image.
"""
if img_arr.ndim != 3 or img_arr.shape[2] != 3:
raise ValueError("apply_3d_lut expects an HxWx3 image array")
img_float = img_arr.astype(np.float32) / 255.0
sampled = _trilinear_sample_lut(img_float, lut3d) # HxWx3 floats in [0,1]
out = np.clip(sampled * 255.0, 0, 255).astype(np.uint8)
if strength >= 1.0:
return out
else:
blended = ((1.0 - strength) * img_arr.astype(np.float32) + strength * out.astype(np.float32))
return np.clip(blended, 0, 255).astype(np.uint8)
def apply_lut(img_arr: np.ndarray, lut: np.ndarray, strength: float = 1.0) -> np.ndarray:
"""
Auto-detect LUT type and apply.
- If lut.ndim in (1,2) treat as 1D LUT (per-channel if shape (N,3)).
- If lut.ndim == 4 treat as 3D LUT (SxSxSx3) in [0,1].
"""
lut = np.array(lut)
if lut.ndim == 4 and lut.shape[3] == 3:
# 3D LUT (assumed normalized [0..1])
# If lut is in 0..255, normalize
if lut.dtype != np.float32 and lut.max() > 1.0:
lut = lut.astype(np.float32) / 255.0
return apply_3d_lut(img_arr, lut, strength=strength)
elif lut.ndim in (1, 2):
return apply_1d_lut(img_arr, lut, strength=strength)
else:
raise ValueError("Unsupported LUT shape: {}".format(lut.shape))
def load_cube_lut(path: str) -> np.ndarray:
"""
Parse a .cube file and return a 3D LUT array of shape (S,S,S,3) with float values in [0,1].
Note: .cube file order sometimes varies; this function assumes standard ordering
where data lines are triples of floats and LUT_3D_SIZE specifies S.
"""
with open(path, 'r', encoding='utf-8', errors='ignore') as f:
lines = [ln.strip() for ln in f if ln.strip() and not ln.strip().startswith('#')]
size = None
data = []
domain_min = np.array([0.0, 0.0, 0.0], dtype=np.float32)
domain_max = np.array([1.0, 1.0, 1.0], dtype=np.float32)
for ln in lines:
if ln.upper().startswith('LUT_3D_SIZE'):
parts = ln.split()
if len(parts) >= 2:
size = int(parts[1])
elif ln.upper().startswith('DOMAIN_MIN'):
parts = ln.split()
domain_min = np.array([float(p) for p in parts[1:4]], dtype=np.float32)
elif ln.upper().startswith('DOMAIN_MAX'):
parts = ln.split()
domain_max = np.array([float(p) for p in parts[1:4]], dtype=np.float32)
elif re.match(r'^-?\d+(\.\d+)?\s+-?\d+(\.\d+)?\s+-?\d+(\.\d+)?$', ln):
parts = [float(x) for x in ln.split()]
data.append(parts)
if size is None:
raise ValueError("LUT_3D_SIZE not found in .cube file: {}".format(path))
data = np.array(data, dtype=np.float32)
if data.shape[0] != size**3:
raise ValueError("Cube LUT data length does not match size^3 (got {}, expected {})".format(data.shape[0], size**3))
# Data ordering in many .cube files is: for r in 0..S-1: for g in 0..S-1: for b in 0..S-1: write RGB
# We'll reshape into (S,S,S,3) with indices [r,g,b]
lut = data.reshape((size, size, size, 3))
# Map domain_min..domain_max to 0..1 if domain specified (rare)
if not np.allclose(domain_min, [0.0, 0.0, 0.0]) or not np.allclose(domain_max, [1.0, 1.0, 1.0]):
# scale lut values from domain range into 0..1
lut = (lut - domain_min) / (domain_max - domain_min + 1e-12)
lut = np.clip(lut, 0.0, 1.0)
else:
# ensure LUT is in [0,1] if not already
if lut.max() > 1.0 + 1e-6:
lut = lut / 255.0
return lut.astype(np.float32)
def load_lut(path: str) -> np.ndarray:
"""
Load a LUT from:
- .npy (numpy saved array)
- .cube (3D LUT)
- image (PNG/JPG) that is a 1D LUT strip (common 256x1 or 1x256)
Returns numpy array (1D, 2D, or 4D LUT).
"""
ext = os.path.splitext(path)[1].lower()
if ext == '.npy':
return np.load(path)
elif ext == '.cube':
return load_cube_lut(path)
else:
# try interpreting as image-based 1D LUT
try:
im = Image.open(path).convert('RGB')
arr = np.array(im)
h, w = arr.shape[:2]
# 256x1 or 1x256 typical 1D LUT
if (w == 256 and h == 1) or (h == 256 and w == 1):
if h == 1:
lut = arr[0, :, :].astype(np.float32)
else:
lut = arr[:, 0, :].astype(np.float32)
return lut # shape (256,3)
# sometimes embedded as 512x16 or other tile layouts; attempt to flatten
# fallback: flatten and try to build (N,3)
flat = arr.reshape(-1, 3).astype(np.float32)
# if length is perfect power-of-two and <= 1024, assume 1D
L = flat.shape[0]
if L <= 4096:
return flat # (L,3)
raise ValueError("Image LUT not recognized size")
except Exception as e:
raise ValueError(f"Unsupported LUT file or parse error for {path}: {e}")
# --- end appended LUT helpers
|