Fix ComfyUI Node, Fix AWB implementation
Browse files- image_postprocess/processor.py +20 -10
- nodes.py +41 -55
- run.py +6 -4
image_postprocess/processor.py
CHANGED
|
@@ -59,14 +59,20 @@ def process_image(path_in, path_out, args):
|
|
| 59 |
img = Image.open(path_in).convert('RGB')
|
| 60 |
arr = np.array(img)
|
| 61 |
|
| 62 |
-
# --- Auto white-balance
|
| 63 |
-
if args.
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
# apply CLAHE color correction (contrast)
|
| 72 |
arr = clahe_color_correction(arr, clip_limit=args.clahe_clip, tile_grid_size=(args.tile, args.tile))
|
|
@@ -128,7 +134,11 @@ def build_argparser():
|
|
| 128 |
p = argparse.ArgumentParser(description="Image postprocessing pipeline with camera simulation and LUT support")
|
| 129 |
p.add_argument('input', help='Input image path')
|
| 130 |
p.add_argument('output', help='Output image path')
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
p.add_argument('--noise-std', type=float, default=0.02, help='Gaussian noise std fraction of 255 (0-0.1)')
|
| 133 |
p.add_argument('--clahe-clip', type=float, default=2.0, help='CLAHE clip limit')
|
| 134 |
p.add_argument('--tile', type=int, default=8, help='CLAHE tile grid size')
|
|
@@ -173,4 +183,4 @@ if __name__ == "__main__":
|
|
| 173 |
print("Input not found:", args.input)
|
| 174 |
raise SystemExit(2)
|
| 175 |
process_image(args.input, args.output, args)
|
| 176 |
-
print("Saved:", args.output)
|
|
|
|
| 59 |
img = Image.open(path_in).convert('RGB')
|
| 60 |
arr = np.array(img)
|
| 61 |
|
| 62 |
+
# --- Auto white-balance (if enabled) ---
|
| 63 |
+
if args.awb:
|
| 64 |
+
if args.ref:
|
| 65 |
+
try:
|
| 66 |
+
ref_img_awb = Image.open(args.ref).convert('RGB')
|
| 67 |
+
ref_arr_awb = np.array(ref_img_awb)
|
| 68 |
+
arr = auto_white_balance_ref(arr, ref_arr_awb)
|
| 69 |
+
except Exception as e:
|
| 70 |
+
print(f"Warning: failed to load AWB reference '{args.ref}': {e}. Skipping AWB.")
|
| 71 |
+
else:
|
| 72 |
+
print("Applying AWB using grey-world assumption...")
|
| 73 |
+
# Assuming auto_white_balance_ref with a None reference
|
| 74 |
+
# triggers the grey-world algorithm as described.
|
| 75 |
+
arr = auto_white_balance_ref(arr, None)
|
| 76 |
|
| 77 |
# apply CLAHE color correction (contrast)
|
| 78 |
arr = clahe_color_correction(arr, clip_limit=args.clahe_clip, tile_grid_size=(args.tile, args.tile))
|
|
|
|
| 134 |
p = argparse.ArgumentParser(description="Image postprocessing pipeline with camera simulation and LUT support")
|
| 135 |
p.add_argument('input', help='Input image path')
|
| 136 |
p.add_argument('output', help='Output image path')
|
| 137 |
+
|
| 138 |
+
# AWB Options
|
| 139 |
+
p.add_argument('--awb', action='store_true', help='Enable automatic white balancing. Uses grey-world if --ref is not provided.')
|
| 140 |
+
p.add_argument('--ref', help='Optional reference image for auto white-balance (only used if --awb is enabled)', default=None)
|
| 141 |
+
|
| 142 |
p.add_argument('--noise-std', type=float, default=0.02, help='Gaussian noise std fraction of 255 (0-0.1)')
|
| 143 |
p.add_argument('--clahe-clip', type=float, default=2.0, help='CLAHE clip limit')
|
| 144 |
p.add_argument('--tile', type=int, default=8, help='CLAHE tile grid size')
|
|
|
|
| 183 |
print("Input not found:", args.input)
|
| 184 |
raise SystemExit(2)
|
| 185 |
process_image(args.input, args.output, args)
|
| 186 |
+
print("Saved:", args.output)
|
nodes.py
CHANGED
|
@@ -13,6 +13,7 @@ except Exception as e:
|
|
| 13 |
else:
|
| 14 |
IMPORT_ERROR = None
|
| 15 |
|
|
|
|
| 16 |
|
| 17 |
class NovaNodes:
|
| 18 |
"""
|
|
@@ -34,6 +35,9 @@ class NovaNodes:
|
|
| 34 |
"required": {
|
| 35 |
"image": ("IMAGE",),
|
| 36 |
|
|
|
|
|
|
|
|
|
|
| 37 |
# EXIF
|
| 38 |
"apply_exif_o": ("BOOLEAN", {"default": True}),
|
| 39 |
|
|
@@ -63,9 +67,9 @@ class NovaNodes:
|
|
| 63 |
"apply_chromatic_aberration_o": ("BOOLEAN", {"default": True}),
|
| 64 |
"ca_shift": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 5.0, "step": 0.1}),
|
| 65 |
|
| 66 |
-
# Banding
|
| 67 |
"apply_banding_o": ("BOOLEAN", {"default": True}),
|
| 68 |
-
"
|
| 69 |
|
| 70 |
# Motion blur
|
| 71 |
"apply_motion_blur_o": ("BOOLEAN", {"default": True}),
|
|
@@ -82,12 +86,13 @@ class NovaNodes:
|
|
| 82 |
"iso_scale": ("FLOAT", {"default": 1.0, "min": 0.1, "max": 16.0, "step": 0.1}),
|
| 83 |
"read_noise": ("FLOAT", {"default": 2.0, "min": 0.0, "max": 50.0, "step": 0.1}),
|
| 84 |
|
| 85 |
-
# LUT
|
| 86 |
-
"lut": ("STRING", {"default": ""}),
|
| 87 |
"lut_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
| 88 |
},
|
| 89 |
"optional": {
|
| 90 |
-
"
|
|
|
|
| 91 |
}
|
| 92 |
}
|
| 93 |
|
|
@@ -96,7 +101,8 @@ class NovaNodes:
|
|
| 96 |
FUNCTION = "process"
|
| 97 |
CATEGORY = "postprocessing"
|
| 98 |
|
| 99 |
-
def process(self, image,
|
|
|
|
| 100 |
apply_exif_o=True,
|
| 101 |
noise_std_frac=0.015,
|
| 102 |
hot_pixel_prob=1e-6,
|
|
@@ -115,7 +121,7 @@ class NovaNodes:
|
|
| 115 |
apply_chromatic_aberration_o=True,
|
| 116 |
ca_shift=1.0,
|
| 117 |
apply_banding_o=True,
|
| 118 |
-
|
| 119 |
apply_motion_blur_o=True,
|
| 120 |
motion_blur_ksize=7,
|
| 121 |
apply_jpeg_cycles_o=True,
|
|
@@ -135,55 +141,27 @@ class NovaNodes:
|
|
| 135 |
|
| 136 |
def to_pil_from_any(inp):
|
| 137 |
"""Convert a torch tensor / numpy array of many shapes into a PIL RGB Image."""
|
| 138 |
-
# get numpy
|
| 139 |
if isinstance(inp, torch.Tensor):
|
| 140 |
arr = inp.detach().cpu().numpy()
|
| 141 |
else:
|
| 142 |
arr = np.asarray(inp)
|
| 143 |
-
|
| 144 |
-
# remove leading batch dimension if present
|
| 145 |
if arr.ndim == 4 and arr.shape[0] == 1:
|
| 146 |
arr = arr[0]
|
| 147 |
-
|
| 148 |
-
# CHW -> HWC
|
| 149 |
if arr.ndim == 3 and arr.shape[0] in (1, 3):
|
| 150 |
arr = np.transpose(arr, (1, 2, 0))
|
| 151 |
-
|
| 152 |
-
# if still 3D and last dim is channel (H,W,C) but C==1 or 3: OK
|
| 153 |
if arr.ndim == 2:
|
| 154 |
-
# grayscale HxW -> make HxWx1
|
| 155 |
arr = arr[:, :, None]
|
| 156 |
-
|
| 157 |
-
# Now arr should be H x W x C
|
| 158 |
-
if arr.ndim != 3:
|
| 159 |
-
# try permutations heuristically (rare)
|
| 160 |
-
for perm in [(1, 2, 0), (2, 0, 1), (0, 2, 1)]:
|
| 161 |
-
try:
|
| 162 |
-
cand = np.transpose(arr, perm)
|
| 163 |
-
if cand.ndim == 3:
|
| 164 |
-
arr = cand
|
| 165 |
-
break
|
| 166 |
-
except Exception:
|
| 167 |
-
pass
|
| 168 |
-
|
| 169 |
if arr.ndim != 3:
|
| 170 |
raise TypeError(f"Cannot convert array to HWC image, final ndim={arr.ndim}, shape={arr.shape}")
|
| 171 |
-
|
| 172 |
-
# Normalize numeric range to 0..255 uint8
|
| 173 |
if np.issubdtype(arr.dtype, np.floating):
|
| 174 |
-
# assume floats are 0..1 if max <= 1.0
|
| 175 |
if arr.max() <= 1.0:
|
| 176 |
arr = (arr * 255.0).clip(0, 255).astype(np.uint8)
|
| 177 |
else:
|
| 178 |
arr = np.clip(arr, 0, 255).astype(np.uint8)
|
| 179 |
else:
|
| 180 |
arr = arr.astype(np.uint8)
|
| 181 |
-
|
| 182 |
-
# If single channel, replicate to 3 channels (we want RGB files)
|
| 183 |
if arr.shape[2] == 1:
|
| 184 |
arr = np.repeat(arr, 3, axis=2)
|
| 185 |
-
|
| 186 |
-
# finally create PIL
|
| 187 |
return Image.fromarray(arr)
|
| 188 |
|
| 189 |
try:
|
|
@@ -194,25 +172,35 @@ class NovaNodes:
|
|
| 194 |
pil_img.save(input_path)
|
| 195 |
tmp_files.append(input_path)
|
| 196 |
|
| 197 |
-
# ----
|
| 198 |
-
|
| 199 |
-
if
|
| 200 |
-
|
| 201 |
-
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
tmp_files.append(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
|
| 206 |
# ---- Output path ----
|
| 207 |
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as tmp_output:
|
| 208 |
output_path = tmp_output.name
|
| 209 |
tmp_files.append(output_path)
|
| 210 |
|
| 211 |
-
# Prepare args for process_image
|
| 212 |
args = SimpleNamespace(
|
| 213 |
input=input_path,
|
| 214 |
output=output_path,
|
| 215 |
-
|
|
|
|
| 216 |
noise_std=noise_std_frac,
|
| 217 |
hot_pixel_prob=hot_pixel_prob,
|
| 218 |
perturb=perturb_mag_frac,
|
|
@@ -224,21 +212,20 @@ class NovaNodes:
|
|
| 224 |
fft_alpha=fourier_alpha,
|
| 225 |
radial_smooth=fourier_radial_smooth,
|
| 226 |
fft_mode=fourier_mode,
|
| 227 |
-
fft_ref=
|
| 228 |
vignette_strength=vignette_strength if apply_vignette_o else 0.0,
|
| 229 |
chroma_strength=ca_shift if apply_chromatic_aberration_o else 0.0,
|
| 230 |
-
banding_strength=
|
| 231 |
motion_blur_kernel=motion_blur_ksize if apply_motion_blur_o else 1,
|
| 232 |
jpeg_cycles=jpeg_cycles if apply_jpeg_cycles_o else 1,
|
| 233 |
jpeg_qmin=jpeg_quality,
|
| 234 |
jpeg_qmax=jpeg_quality,
|
| 235 |
sim_camera=sim_camera,
|
| 236 |
-
no_no_bayer=enable_bayer,
|
| 237 |
iso_scale=iso_scale,
|
| 238 |
read_noise=read_noise,
|
| 239 |
seed=None,
|
| 240 |
cutoff=0.25,
|
| 241 |
-
# LUT fields (new)
|
| 242 |
lut=(lut if lut != "" else None),
|
| 243 |
lut_strength=lut_strength,
|
| 244 |
)
|
|
@@ -246,9 +233,9 @@ class NovaNodes:
|
|
| 246 |
# ---- Run the processing function ----
|
| 247 |
process_image(input_path, output_path, args)
|
| 248 |
|
| 249 |
-
# ---- Load result (force RGB
|
| 250 |
output_img = Image.open(output_path).convert("RGB")
|
| 251 |
-
img_out = np.array(output_img)
|
| 252 |
|
| 253 |
# ---- EXIF insertion (optional) ----
|
| 254 |
new_exif = ""
|
|
@@ -261,11 +248,10 @@ class NovaNodes:
|
|
| 261 |
new_exif = ""
|
| 262 |
|
| 263 |
# ---- Convert to FOOLAI-style tensor: (1, H, W, C), float32 in [0,1] ----
|
| 264 |
-
img_float = img_out.astype(np.float32) / 255.0
|
| 265 |
-
tensor_out = torch.from_numpy(img_float).to(dtype=torch.float32).unsqueeze(0)
|
| 266 |
tensor_out = torch.clamp(tensor_out, 0.0, 1.0)
|
| 267 |
|
| 268 |
-
# Return the same format FOOLAI uses: (tensor, exif_string)
|
| 269 |
return (tensor_out, new_exif)
|
| 270 |
|
| 271 |
finally:
|
|
@@ -314,4 +300,4 @@ NODE_CLASS_MAPPINGS = {
|
|
| 314 |
}
|
| 315 |
NODE_DISPLAY_NAME_MAPPINGS = {
|
| 316 |
"NovaNodes": "Image Postprocess (NOVA NODES)",
|
| 317 |
-
}
|
|
|
|
| 13 |
else:
|
| 14 |
IMPORT_ERROR = None
|
| 15 |
|
| 16 |
+
lut_extensions = ['png','npy','cube']
|
| 17 |
|
| 18 |
class NovaNodes:
|
| 19 |
"""
|
|
|
|
| 35 |
"required": {
|
| 36 |
"image": ("IMAGE",),
|
| 37 |
|
| 38 |
+
# AWB
|
| 39 |
+
"enable_awb": ("BOOLEAN", {"default": False}),
|
| 40 |
+
|
| 41 |
# EXIF
|
| 42 |
"apply_exif_o": ("BOOLEAN", {"default": True}),
|
| 43 |
|
|
|
|
| 67 |
"apply_chromatic_aberration_o": ("BOOLEAN", {"default": True}),
|
| 68 |
"ca_shift": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 5.0, "step": 0.1}),
|
| 69 |
|
| 70 |
+
# Banding (FIXED)
|
| 71 |
"apply_banding_o": ("BOOLEAN", {"default": True}),
|
| 72 |
+
"banding_strength": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
|
| 73 |
|
| 74 |
# Motion blur
|
| 75 |
"apply_motion_blur_o": ("BOOLEAN", {"default": True}),
|
|
|
|
| 86 |
"iso_scale": ("FLOAT", {"default": 1.0, "min": 0.1, "max": 16.0, "step": 0.1}),
|
| 87 |
"read_noise": ("FLOAT", {"default": 2.0, "min": 0.0, "max": 50.0, "step": 0.1}),
|
| 88 |
|
| 89 |
+
# LUT
|
| 90 |
+
"lut": ("STRING", {"default": "X://insert/path/here.npy", "vhs_path_extensions": lut_extensions}),
|
| 91 |
"lut_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
| 92 |
},
|
| 93 |
"optional": {
|
| 94 |
+
"awb_ref_image": ("IMAGE",),
|
| 95 |
+
"fft_ref_image": ("IMAGE",),
|
| 96 |
}
|
| 97 |
}
|
| 98 |
|
|
|
|
| 101 |
FUNCTION = "process"
|
| 102 |
CATEGORY = "postprocessing"
|
| 103 |
|
| 104 |
+
def process(self, image, awb_ref_image=None, fft_ref_image=None,
|
| 105 |
+
enable_awb=False,
|
| 106 |
apply_exif_o=True,
|
| 107 |
noise_std_frac=0.015,
|
| 108 |
hot_pixel_prob=1e-6,
|
|
|
|
| 121 |
apply_chromatic_aberration_o=True,
|
| 122 |
ca_shift=1.0,
|
| 123 |
apply_banding_o=True,
|
| 124 |
+
banding_strength=0.5,
|
| 125 |
apply_motion_blur_o=True,
|
| 126 |
motion_blur_ksize=7,
|
| 127 |
apply_jpeg_cycles_o=True,
|
|
|
|
| 141 |
|
| 142 |
def to_pil_from_any(inp):
|
| 143 |
"""Convert a torch tensor / numpy array of many shapes into a PIL RGB Image."""
|
|
|
|
| 144 |
if isinstance(inp, torch.Tensor):
|
| 145 |
arr = inp.detach().cpu().numpy()
|
| 146 |
else:
|
| 147 |
arr = np.asarray(inp)
|
|
|
|
|
|
|
| 148 |
if arr.ndim == 4 and arr.shape[0] == 1:
|
| 149 |
arr = arr[0]
|
|
|
|
|
|
|
| 150 |
if arr.ndim == 3 and arr.shape[0] in (1, 3):
|
| 151 |
arr = np.transpose(arr, (1, 2, 0))
|
|
|
|
|
|
|
| 152 |
if arr.ndim == 2:
|
|
|
|
| 153 |
arr = arr[:, :, None]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
if arr.ndim != 3:
|
| 155 |
raise TypeError(f"Cannot convert array to HWC image, final ndim={arr.ndim}, shape={arr.shape}")
|
|
|
|
|
|
|
| 156 |
if np.issubdtype(arr.dtype, np.floating):
|
|
|
|
| 157 |
if arr.max() <= 1.0:
|
| 158 |
arr = (arr * 255.0).clip(0, 255).astype(np.uint8)
|
| 159 |
else:
|
| 160 |
arr = np.clip(arr, 0, 255).astype(np.uint8)
|
| 161 |
else:
|
| 162 |
arr = arr.astype(np.uint8)
|
|
|
|
|
|
|
| 163 |
if arr.shape[2] == 1:
|
| 164 |
arr = np.repeat(arr, 3, axis=2)
|
|
|
|
|
|
|
| 165 |
return Image.fromarray(arr)
|
| 166 |
|
| 167 |
try:
|
|
|
|
| 172 |
pil_img.save(input_path)
|
| 173 |
tmp_files.append(input_path)
|
| 174 |
|
| 175 |
+
# ---- AWB reference image if present ----
|
| 176 |
+
awb_ref_path = None
|
| 177 |
+
if awb_ref_image is not None:
|
| 178 |
+
pil_ref_awb = to_pil_from_any(awb_ref_image[0])
|
| 179 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_ref_awb:
|
| 180 |
+
awb_ref_path = tmp_ref_awb.name
|
| 181 |
+
pil_ref_awb.save(awb_ref_path)
|
| 182 |
+
tmp_files.append(awb_ref_path)
|
| 183 |
+
|
| 184 |
+
# ---- FFT reference image if present ----
|
| 185 |
+
fft_ref_path = None
|
| 186 |
+
if fft_ref_image is not None:
|
| 187 |
+
pil_ref_fft = to_pil_from_any(fft_ref_image[0])
|
| 188 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_ref_fft:
|
| 189 |
+
fft_ref_path = tmp_ref_fft.name
|
| 190 |
+
pil_ref_fft.save(fft_ref_path)
|
| 191 |
+
tmp_files.append(fft_ref_path)
|
| 192 |
|
| 193 |
# ---- Output path ----
|
| 194 |
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as tmp_output:
|
| 195 |
output_path = tmp_output.name
|
| 196 |
tmp_files.append(output_path)
|
| 197 |
|
| 198 |
+
# Prepare args for process_image
|
| 199 |
args = SimpleNamespace(
|
| 200 |
input=input_path,
|
| 201 |
output=output_path,
|
| 202 |
+
awb=enable_awb, # Explicit AWB flag
|
| 203 |
+
ref=awb_ref_path,
|
| 204 |
noise_std=noise_std_frac,
|
| 205 |
hot_pixel_prob=hot_pixel_prob,
|
| 206 |
perturb=perturb_mag_frac,
|
|
|
|
| 212 |
fft_alpha=fourier_alpha,
|
| 213 |
radial_smooth=fourier_radial_smooth,
|
| 214 |
fft_mode=fourier_mode,
|
| 215 |
+
fft_ref=fft_ref_path,
|
| 216 |
vignette_strength=vignette_strength if apply_vignette_o else 0.0,
|
| 217 |
chroma_strength=ca_shift if apply_chromatic_aberration_o else 0.0,
|
| 218 |
+
banding_strength=banding_strength if apply_banding_o else 0.0,
|
| 219 |
motion_blur_kernel=motion_blur_ksize if apply_motion_blur_o else 1,
|
| 220 |
jpeg_cycles=jpeg_cycles if apply_jpeg_cycles_o else 1,
|
| 221 |
jpeg_qmin=jpeg_quality,
|
| 222 |
jpeg_qmax=jpeg_quality,
|
| 223 |
sim_camera=sim_camera,
|
| 224 |
+
no_no_bayer=not enable_bayer, # FIX: Inverted logic corrected
|
| 225 |
iso_scale=iso_scale,
|
| 226 |
read_noise=read_noise,
|
| 227 |
seed=None,
|
| 228 |
cutoff=0.25,
|
|
|
|
| 229 |
lut=(lut if lut != "" else None),
|
| 230 |
lut_strength=lut_strength,
|
| 231 |
)
|
|
|
|
| 233 |
# ---- Run the processing function ----
|
| 234 |
process_image(input_path, output_path, args)
|
| 235 |
|
| 236 |
+
# ---- Load result (force RGB) ----
|
| 237 |
output_img = Image.open(output_path).convert("RGB")
|
| 238 |
+
img_out = np.array(output_img)
|
| 239 |
|
| 240 |
# ---- EXIF insertion (optional) ----
|
| 241 |
new_exif = ""
|
|
|
|
| 248 |
new_exif = ""
|
| 249 |
|
| 250 |
# ---- Convert to FOOLAI-style tensor: (1, H, W, C), float32 in [0,1] ----
|
| 251 |
+
img_float = img_out.astype(np.float32) / 255.0
|
| 252 |
+
tensor_out = torch.from_numpy(img_float).to(dtype=torch.float32).unsqueeze(0)
|
| 253 |
tensor_out = torch.clamp(tensor_out, 0.0, 1.0)
|
| 254 |
|
|
|
|
| 255 |
return (tensor_out, new_exif)
|
| 256 |
|
| 257 |
finally:
|
|
|
|
| 300 |
}
|
| 301 |
NODE_DISPLAY_NAME_MAPPINGS = {
|
| 302 |
"NovaNodes": "Image Postprocess (NOVA NODES)",
|
| 303 |
+
}
|
run.py
CHANGED
|
@@ -515,11 +515,13 @@ class MainWindow(QMainWindow):
|
|
| 515 |
args.banding_strength = float(self.banding_spin.value())
|
| 516 |
args.motion_blur_kernel = int(self.motion_blur_spin.value())
|
| 517 |
|
| 518 |
-
# AWB handling
|
| 519 |
if self.awb_chk.isChecked():
|
| 520 |
-
args.
|
|
|
|
| 521 |
else:
|
| 522 |
-
args.
|
|
|
|
| 523 |
|
| 524 |
# FFT spectral matching reference
|
| 525 |
args.fft_ref = fft_ref_val
|
|
@@ -608,4 +610,4 @@ def main():
|
|
| 608 |
sys.exit(app.exec_())
|
| 609 |
|
| 610 |
if __name__ == '__main__':
|
| 611 |
-
main()
|
|
|
|
| 515 |
args.banding_strength = float(self.banding_spin.value())
|
| 516 |
args.motion_blur_kernel = int(self.motion_blur_spin.value())
|
| 517 |
|
| 518 |
+
# AWB handling to match the new --awb flag in the backend
|
| 519 |
if self.awb_chk.isChecked():
|
| 520 |
+
args.awb = True
|
| 521 |
+
args.ref = awb_ref_val # This can be the path or None (for grey-world)
|
| 522 |
else:
|
| 523 |
+
args.awb = False
|
| 524 |
+
args.ref = None # Not strictly necessary as backend ignores it, but good practice
|
| 525 |
|
| 526 |
# FFT spectral matching reference
|
| 527 |
args.fft_ref = fft_ref_val
|
|
|
|
| 610 |
sys.exit(app.exec_())
|
| 611 |
|
| 612 |
if __name__ == '__main__':
|
| 613 |
+
main()
|