Added LUT
Browse files- analysis_panel.py +125 -30
- image_postprocess/__init__.py +1 -1
- image_postprocess/{image_postprocess_with_camera_pipeline.py → processor.py} +28 -10
- image_postprocess/utils.py +226 -2
- run.py +63 -5
analysis_panel.py
CHANGED
|
@@ -1,74 +1,169 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
Analysis panel for histogram, FFT, and radial profile plots.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
"""
|
| 5 |
|
| 6 |
-
from PyQt5.QtWidgets import QWidget, QVBoxLayout, QHBoxLayout, QGroupBox, QSizePolicy
|
| 7 |
from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas
|
| 8 |
from matplotlib.figure import Figure
|
| 9 |
import numpy as np
|
| 10 |
import os
|
|
|
|
| 11 |
from utils import compute_gray_array, compute_fft_magnitude, radial_profile, make_canvas
|
| 12 |
|
|
|
|
| 13 |
class AnalysisPanel(QWidget):
|
| 14 |
-
def __init__(self, title="Analysis", parent=None):
|
| 15 |
super().__init__(parent)
|
|
|
|
|
|
|
|
|
|
| 16 |
v = QVBoxLayout(self)
|
| 17 |
box = QGroupBox(title)
|
| 18 |
vbox = QVBoxLayout()
|
| 19 |
box.setLayout(vbox)
|
| 20 |
|
|
|
|
| 21 |
row = QHBoxLayout()
|
|
|
|
|
|
|
| 22 |
self.hist_canvas, self.hist_ax = make_canvas(width=3, height=2)
|
| 23 |
self.fft_canvas, self.fft_ax = make_canvas(width=3, height=2)
|
| 24 |
self.radial_canvas, self.radial_ax = make_canvas(width=3, height=2)
|
| 25 |
|
| 26 |
for c in (self.hist_canvas, self.fft_canvas, self.radial_canvas):
|
| 27 |
c.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
row.addWidget(self.hist_canvas)
|
| 30 |
row.addWidget(self.fft_canvas)
|
| 31 |
row.addWidget(self.radial_canvas)
|
| 32 |
|
| 33 |
vbox.addLayout(row)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
v.addWidget(box)
|
| 35 |
|
| 36 |
-
def update_from_path(self, path):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
if not path or not os.path.exists(path):
|
|
|
|
|
|
|
| 38 |
self.clear_plots()
|
| 39 |
return
|
|
|
|
| 40 |
try:
|
| 41 |
gray = compute_gray_array(path)
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
self.clear_plots()
|
| 44 |
return
|
| 45 |
|
| 46 |
-
#
|
| 47 |
-
self.
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
def clear_plots(self):
|
|
|
|
| 72 |
for ax, canvas in ((self.hist_ax, self.hist_canvas), (self.fft_ax, self.fft_canvas), (self.radial_ax, self.radial_canvas)):
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
Analysis panel for histogram, FFT, and radial profile plots.
|
| 4 |
+
Designed to plug straight into the provided run.py / MainWindow.
|
| 5 |
+
|
| 6 |
+
Exposes AnalysisPanel(title: str) with method update_from_path(path)
|
| 7 |
+
and clear_plots(). Uses helpers from utils:
|
| 8 |
+
- compute_gray_array(path) -> 2D numpy.ndarray (grayscale 0-255)
|
| 9 |
+
- compute_fft_magnitude(gray) -> (mag, mag_log)
|
| 10 |
+
- radial_profile(mag) -> (centers, radial)
|
| 11 |
+
- make_canvas(width, height) -> (FigureCanvas, Axes)
|
| 12 |
+
|
| 13 |
+
This module is intentionally defensive (catches errors) and keeps
|
| 14 |
+
its own layout compact so it will fit in the scrollable right-hand
|
| 15 |
+
panel in MainWindow.
|
| 16 |
"""
|
| 17 |
|
| 18 |
+
from PyQt5.QtWidgets import QWidget, QVBoxLayout, QHBoxLayout, QGroupBox, QSizePolicy, QLabel
|
| 19 |
from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas
|
| 20 |
from matplotlib.figure import Figure
|
| 21 |
import numpy as np
|
| 22 |
import os
|
| 23 |
+
|
| 24 |
from utils import compute_gray_array, compute_fft_magnitude, radial_profile, make_canvas
|
| 25 |
|
| 26 |
+
|
| 27 |
class AnalysisPanel(QWidget):
|
| 28 |
+
def __init__(self, title: str = "Analysis", parent=None):
|
| 29 |
super().__init__(parent)
|
| 30 |
+
self.setMinimumHeight(220)
|
| 31 |
+
|
| 32 |
+
# Top-level layout + framed group
|
| 33 |
v = QVBoxLayout(self)
|
| 34 |
box = QGroupBox(title)
|
| 35 |
vbox = QVBoxLayout()
|
| 36 |
box.setLayout(vbox)
|
| 37 |
|
| 38 |
+
# Row of three matplotlib canvases
|
| 39 |
row = QHBoxLayout()
|
| 40 |
+
|
| 41 |
+
# create canvases using project's make_canvas helper so styles match
|
| 42 |
self.hist_canvas, self.hist_ax = make_canvas(width=3, height=2)
|
| 43 |
self.fft_canvas, self.fft_ax = make_canvas(width=3, height=2)
|
| 44 |
self.radial_canvas, self.radial_ax = make_canvas(width=3, height=2)
|
| 45 |
|
| 46 |
for c in (self.hist_canvas, self.fft_canvas, self.radial_canvas):
|
| 47 |
c.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding)
|
| 48 |
+
# give figures a consistent, compact margin so they sit well inside the GroupBox
|
| 49 |
+
try:
|
| 50 |
+
c.figure.subplots_adjust(top=0.88, bottom=0.12, left=0.12, right=0.96)
|
| 51 |
+
except Exception:
|
| 52 |
+
pass
|
| 53 |
|
| 54 |
row.addWidget(self.hist_canvas)
|
| 55 |
row.addWidget(self.fft_canvas)
|
| 56 |
row.addWidget(self.radial_canvas)
|
| 57 |
|
| 58 |
vbox.addLayout(row)
|
| 59 |
+
|
| 60 |
+
# small status label below canvases for quick diagnostics
|
| 61 |
+
self.status_label = QLabel("")
|
| 62 |
+
self.status_label.setWordWrap(True)
|
| 63 |
+
self.status_label.setVisible(False)
|
| 64 |
+
vbox.addWidget(self.status_label)
|
| 65 |
+
|
| 66 |
v.addWidget(box)
|
| 67 |
|
| 68 |
+
def update_from_path(self, path: str):
|
| 69 |
+
"""Update all three plots using the image at `path`.
|
| 70 |
+
|
| 71 |
+
If path is invalid or an error occurs while loading/processing,
|
| 72 |
+
plots are cleared and a status message is shown.
|
| 73 |
+
"""
|
| 74 |
if not path or not os.path.exists(path):
|
| 75 |
+
self.status_label.setText(f"No image: {path}")
|
| 76 |
+
self.status_label.setVisible(True)
|
| 77 |
self.clear_plots()
|
| 78 |
return
|
| 79 |
+
|
| 80 |
try:
|
| 81 |
gray = compute_gray_array(path)
|
| 82 |
+
if gray is None:
|
| 83 |
+
raise ValueError("compute_gray_array returned None")
|
| 84 |
+
# ensure grayscale array is 2D and finite
|
| 85 |
+
gray = np.asarray(gray)
|
| 86 |
+
if gray.ndim != 2:
|
| 87 |
+
raise ValueError("expected 2D grayscale array")
|
| 88 |
+
|
| 89 |
+
except Exception as e:
|
| 90 |
+
self.status_label.setText(f"Failed to load image: {e}")
|
| 91 |
+
self.status_label.setVisible(True)
|
| 92 |
self.clear_plots()
|
| 93 |
return
|
| 94 |
|
| 95 |
+
# Good: hide status
|
| 96 |
+
self.status_label.setVisible(False)
|
| 97 |
+
|
| 98 |
+
# -------------------- Histogram --------------------
|
| 99 |
+
try:
|
| 100 |
+
self.hist_ax.cla()
|
| 101 |
+
self.hist_ax.set_title('Grayscale histogram')
|
| 102 |
+
self.hist_ax.set_xlabel('Intensity')
|
| 103 |
+
self.hist_ax.set_ylabel('Count')
|
| 104 |
+
# ensure int range 0..255
|
| 105 |
+
flat = gray.ravel()
|
| 106 |
+
# handle float data by scaling if necessary
|
| 107 |
+
if flat.dtype.kind == 'f' and flat.max() <= 1.0:
|
| 108 |
+
flat = (flat * 255.0).astype(np.uint8)
|
| 109 |
+
self.hist_ax.hist(flat, bins=256, range=(0, 255))
|
| 110 |
+
self.hist_canvas.draw()
|
| 111 |
+
except Exception as e:
|
| 112 |
+
self.hist_ax.cla()
|
| 113 |
+
self.hist_canvas.draw()
|
| 114 |
+
self.status_label.setText(f"Histogram error: {e}")
|
| 115 |
+
self.status_label.setVisible(True)
|
| 116 |
+
|
| 117 |
+
# -------------------- FFT magnitude --------------------
|
| 118 |
+
try:
|
| 119 |
+
mag, mag_log = compute_fft_magnitude(gray)
|
| 120 |
+
if mag_log is None:
|
| 121 |
+
raise ValueError("compute_fft_magnitude returned None")
|
| 122 |
+
|
| 123 |
+
self.fft_ax.cla()
|
| 124 |
+
self.fft_ax.set_title('FFT magnitude (log)')
|
| 125 |
+
# use imshow with origin='lower' so low-frequencies sit near the centre visually
|
| 126 |
+
self.fft_ax.imshow(mag_log, origin='lower', aspect='auto')
|
| 127 |
+
self.fft_ax.set_xticks([])
|
| 128 |
+
self.fft_ax.set_yticks([])
|
| 129 |
+
# leave some room for colorbar in wider layouts (MainWindow adjusts overall sizes)
|
| 130 |
+
try:
|
| 131 |
+
self.fft_canvas.figure.subplots_adjust(right=0.92)
|
| 132 |
+
except Exception:
|
| 133 |
+
pass
|
| 134 |
+
self.fft_canvas.draw()
|
| 135 |
+
except Exception as e:
|
| 136 |
+
self.fft_ax.cla()
|
| 137 |
+
self.fft_canvas.draw()
|
| 138 |
+
self.status_label.setText(f"FFT error: {e}")
|
| 139 |
+
self.status_label.setVisible(True)
|
| 140 |
+
|
| 141 |
+
# -------------------- Radial profile --------------------
|
| 142 |
+
try:
|
| 143 |
+
centers, radial = radial_profile(mag)
|
| 144 |
+
if centers is None or radial is None:
|
| 145 |
+
raise ValueError("radial_profile returned invalid data")
|
| 146 |
+
|
| 147 |
+
self.radial_ax.cla()
|
| 148 |
+
self.radial_ax.set_title('Radial freq profile')
|
| 149 |
+
self.radial_ax.set_xlabel('Normalized radius')
|
| 150 |
+
self.radial_ax.set_ylabel('Mean magnitude')
|
| 151 |
+
self.radial_ax.plot(centers, radial)
|
| 152 |
+
self.radial_canvas.draw()
|
| 153 |
+
except Exception as e:
|
| 154 |
+
self.radial_ax.cla()
|
| 155 |
+
self.radial_canvas.draw()
|
| 156 |
+
self.status_label.setText(f"Radial profile error: {e}")
|
| 157 |
+
self.status_label.setVisible(True)
|
| 158 |
|
| 159 |
def clear_plots(self):
|
| 160 |
+
"""Clear all axes and redraw empty canvases."""
|
| 161 |
for ax, canvas in ((self.hist_ax, self.hist_canvas), (self.fft_ax, self.fft_canvas), (self.radial_ax, self.radial_canvas)):
|
| 162 |
+
try:
|
| 163 |
+
ax.cla()
|
| 164 |
+
# give an empty centered message on histogram axis only
|
| 165 |
+
if ax is self.hist_ax:
|
| 166 |
+
ax.text(0.5, 0.5, 'No image', horizontalalignment='center', verticalalignment='center', transform=ax.transAxes)
|
| 167 |
+
canvas.draw()
|
| 168 |
+
except Exception:
|
| 169 |
+
pass
|
image_postprocess/__init__.py
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
-
from .
|
| 2 |
|
| 3 |
__all__ = ['process_image']
|
|
|
|
| 1 |
+
from .processor import process_image
|
| 2 |
|
| 3 |
__all__ = ['process_image']
|
image_postprocess/{image_postprocess_with_camera_pipeline.py → processor.py}
RENAMED
|
@@ -1,10 +1,9 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
-
|
| 4 |
|
| 5 |
Main pipeline for image postprocessing with an optional realistic camera-pipeline simulator.
|
| 6 |
-
|
| 7 |
-
Imports helper functions and camera pipeline simulation from separate modules.
|
| 8 |
"""
|
| 9 |
|
| 10 |
import argparse
|
|
@@ -20,20 +19,21 @@ from .utils import (
|
|
| 20 |
randomized_perturbation,
|
| 21 |
fourier_match_spectrum,
|
| 22 |
auto_white_balance_ref,
|
|
|
|
|
|
|
| 23 |
)
|
| 24 |
from .camera_pipeline import simulate_camera_pipeline
|
| 25 |
|
|
|
|
| 26 |
def add_fake_exif():
|
| 27 |
"""
|
| 28 |
Generates a plausible set of fake EXIF data.
|
| 29 |
Returns:
|
| 30 |
bytes: The EXIF data as a byte string, ready for insertion.
|
| 31 |
"""
|
| 32 |
-
# Get current time for timestamp
|
| 33 |
now = datetime.now()
|
| 34 |
datestamp = now.strftime("%Y:%m:%d %H:%M:%S")
|
| 35 |
|
| 36 |
-
# Define some plausible fake EXIF tags
|
| 37 |
zeroth_ifd = {
|
| 38 |
piexif.ImageIFD.Make: b"PurinCamera",
|
| 39 |
piexif.ImageIFD.Model: b"Model420X",
|
|
@@ -46,17 +46,17 @@ def add_fake_exif():
|
|
| 46 |
piexif.ExifIFD.ExposureTime: (1, 125), # 1/125s
|
| 47 |
piexif.ExifIFD.FNumber: (28, 10), # F/2.8
|
| 48 |
piexif.ExifIFD.ISOSpeedRatings: 200,
|
| 49 |
-
piexif.ExifIFD.FocalLength: (50, 1),
|
| 50 |
}
|
| 51 |
-
gps_ifd = {}
|
| 52 |
|
| 53 |
exif_dict = {"0th": zeroth_ifd, "Exif": exif_ifd, "GPS": gps_ifd, "1st": {}, "thumbnail": None}
|
| 54 |
exif_bytes = piexif.dump(exif_dict)
|
| 55 |
return exif_bytes
|
| 56 |
|
|
|
|
| 57 |
def process_image(path_in, path_out, args):
|
| 58 |
img = Image.open(path_in).convert('RGB')
|
| 59 |
-
# input -> numpy array
|
| 60 |
arr = np.array(img)
|
| 61 |
|
| 62 |
# --- Auto white-balance using reference (if provided) ---
|
|
@@ -105,14 +105,27 @@ def process_image(path_in, path_out, args):
|
|
| 105 |
motion_blur_kernel=args.motion_blur_kernel,
|
| 106 |
seed=args.seed)
|
| 107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
out_img = Image.fromarray(arr)
|
| 109 |
-
|
| 110 |
# Generate fake EXIF data and save it with the image
|
| 111 |
fake_exif_bytes = add_fake_exif()
|
| 112 |
out_img.save(path_out, exif=fake_exif_bytes)
|
| 113 |
|
|
|
|
| 114 |
def build_argparser():
|
| 115 |
-
p = argparse.ArgumentParser(description="Image postprocessing pipeline with camera simulation")
|
| 116 |
p.add_argument('input', help='Input image path')
|
| 117 |
p.add_argument('output', help='Output image path')
|
| 118 |
p.add_argument('--ref', help='Optional reference image for auto white-balance (applied before CLAHE)', default=None)
|
|
@@ -147,8 +160,13 @@ def build_argparser():
|
|
| 147 |
p.add_argument('--banding-strength', type=float, default=0.0, help='Horizontal banding amplitude (0..1)')
|
| 148 |
p.add_argument('--motion-blur-kernel', type=int, default=1, help='Motion blur kernel size (1 = none)')
|
| 149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
return p
|
| 151 |
|
|
|
|
| 152 |
if __name__ == "__main__":
|
| 153 |
args = build_argparser().parse_args()
|
| 154 |
if not os.path.exists(args.input):
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
+
processor.py
|
| 4 |
|
| 5 |
Main pipeline for image postprocessing with an optional realistic camera-pipeline simulator.
|
| 6 |
+
Added support for applying 1D PNG/.npy LUTs and .cube 3D LUTs via --lut.
|
|
|
|
| 7 |
"""
|
| 8 |
|
| 9 |
import argparse
|
|
|
|
| 19 |
randomized_perturbation,
|
| 20 |
fourier_match_spectrum,
|
| 21 |
auto_white_balance_ref,
|
| 22 |
+
load_lut,
|
| 23 |
+
apply_lut,
|
| 24 |
)
|
| 25 |
from .camera_pipeline import simulate_camera_pipeline
|
| 26 |
|
| 27 |
+
|
| 28 |
def add_fake_exif():
|
| 29 |
"""
|
| 30 |
Generates a plausible set of fake EXIF data.
|
| 31 |
Returns:
|
| 32 |
bytes: The EXIF data as a byte string, ready for insertion.
|
| 33 |
"""
|
|
|
|
| 34 |
now = datetime.now()
|
| 35 |
datestamp = now.strftime("%Y:%m:%d %H:%M:%S")
|
| 36 |
|
|
|
|
| 37 |
zeroth_ifd = {
|
| 38 |
piexif.ImageIFD.Make: b"PurinCamera",
|
| 39 |
piexif.ImageIFD.Model: b"Model420X",
|
|
|
|
| 46 |
piexif.ExifIFD.ExposureTime: (1, 125), # 1/125s
|
| 47 |
piexif.ExifIFD.FNumber: (28, 10), # F/2.8
|
| 48 |
piexif.ExifIFD.ISOSpeedRatings: 200,
|
| 49 |
+
piexif.ExifIFD.FocalLength: (50, 1), # 50mm
|
| 50 |
}
|
| 51 |
+
gps_ifd = {}
|
| 52 |
|
| 53 |
exif_dict = {"0th": zeroth_ifd, "Exif": exif_ifd, "GPS": gps_ifd, "1st": {}, "thumbnail": None}
|
| 54 |
exif_bytes = piexif.dump(exif_dict)
|
| 55 |
return exif_bytes
|
| 56 |
|
| 57 |
+
|
| 58 |
def process_image(path_in, path_out, args):
|
| 59 |
img = Image.open(path_in).convert('RGB')
|
|
|
|
| 60 |
arr = np.array(img)
|
| 61 |
|
| 62 |
# --- Auto white-balance using reference (if provided) ---
|
|
|
|
| 105 |
motion_blur_kernel=args.motion_blur_kernel,
|
| 106 |
seed=args.seed)
|
| 107 |
|
| 108 |
+
# --- LUT application (optional) ---
|
| 109 |
+
if args.lut:
|
| 110 |
+
try:
|
| 111 |
+
lut = load_lut(args.lut)
|
| 112 |
+
# Ensure array is uint8 for LUT application
|
| 113 |
+
arr_uint8 = np.clip(arr, 0, 255).astype(np.uint8)
|
| 114 |
+
arr_lut = apply_lut(arr_uint8, lut, strength=args.lut_strength)
|
| 115 |
+
# Ensure output is uint8
|
| 116 |
+
arr = np.clip(arr_lut, 0, 255).astype(np.uint8)
|
| 117 |
+
except Exception as e:
|
| 118 |
+
print(f"Warning: failed to load/apply LUT '{args.lut}': {e}. Skipping LUT.")
|
| 119 |
+
|
| 120 |
out_img = Image.fromarray(arr)
|
| 121 |
+
|
| 122 |
# Generate fake EXIF data and save it with the image
|
| 123 |
fake_exif_bytes = add_fake_exif()
|
| 124 |
out_img.save(path_out, exif=fake_exif_bytes)
|
| 125 |
|
| 126 |
+
|
| 127 |
def build_argparser():
|
| 128 |
+
p = argparse.ArgumentParser(description="Image postprocessing pipeline with camera simulation and LUT support")
|
| 129 |
p.add_argument('input', help='Input image path')
|
| 130 |
p.add_argument('output', help='Output image path')
|
| 131 |
p.add_argument('--ref', help='Optional reference image for auto white-balance (applied before CLAHE)', default=None)
|
|
|
|
| 160 |
p.add_argument('--banding-strength', type=float, default=0.0, help='Horizontal banding amplitude (0..1)')
|
| 161 |
p.add_argument('--motion-blur-kernel', type=int, default=1, help='Motion blur kernel size (1 = none)')
|
| 162 |
|
| 163 |
+
# LUT options
|
| 164 |
+
p.add_argument('--lut', type=str, default=None, help='Path to a 1D PNG (256x1) or .npy LUT, or a .cube 3D LUT')
|
| 165 |
+
p.add_argument('--lut-strength', type=float, default=1.0, help='Strength to blend LUT (0.0 = no effect, 1.0 = full LUT)')
|
| 166 |
+
|
| 167 |
return p
|
| 168 |
|
| 169 |
+
|
| 170 |
if __name__ == "__main__":
|
| 171 |
args = build_argparser().parse_args()
|
| 172 |
if not os.path.exists(args.input):
|
image_postprocess/utils.py
CHANGED
|
@@ -4,7 +4,8 @@ utils.py
|
|
| 4 |
Helper functions for image postprocessing, including EXIF removal, noise addition,
|
| 5 |
color correction, and Fourier spectrum matching.
|
| 6 |
"""
|
| 7 |
-
|
|
|
|
| 8 |
from PIL import Image, ImageOps
|
| 9 |
import numpy as np
|
| 10 |
try:
|
|
@@ -229,4 +230,227 @@ def auto_white_balance_ref(img_arr: np.ndarray, ref_img_arr: np.ndarray = None)
|
|
| 229 |
corrected = img * scale
|
| 230 |
corrected = np.clip(corrected, 0, 255).astype(np.uint8)
|
| 231 |
|
| 232 |
-
return corrected
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
Helper functions for image postprocessing, including EXIF removal, noise addition,
|
| 5 |
color correction, and Fourier spectrum matching.
|
| 6 |
"""
|
| 7 |
+
import os
|
| 8 |
+
import re
|
| 9 |
from PIL import Image, ImageOps
|
| 10 |
import numpy as np
|
| 11 |
try:
|
|
|
|
| 230 |
corrected = img * scale
|
| 231 |
corrected = np.clip(corrected, 0, 255).astype(np.uint8)
|
| 232 |
|
| 233 |
+
return corrected
|
| 234 |
+
|
| 235 |
+
def apply_1d_lut(img_arr: np.ndarray, lut: np.ndarray, strength: float = 1.0) -> np.ndarray:
|
| 236 |
+
"""
|
| 237 |
+
Apply a 1D LUT to an image.
|
| 238 |
+
- img_arr: HxWx3 uint8
|
| 239 |
+
- lut: either shape (256,) (applied equally to all channels), (256,3) (per-channel),
|
| 240 |
+
or (N,) / (N,3) (interpolated across [0..255])
|
| 241 |
+
- strength: 0..1 blending between original and LUT result
|
| 242 |
+
Returns uint8 array.
|
| 243 |
+
"""
|
| 244 |
+
if img_arr.ndim != 3 or img_arr.shape[2] != 3:
|
| 245 |
+
raise ValueError("apply_1d_lut expects an HxWx3 image array")
|
| 246 |
+
|
| 247 |
+
# Normalize indices 0..255
|
| 248 |
+
arr = img_arr.astype(np.float32)
|
| 249 |
+
# Prepare LUT as float in 0..255 range if necessary
|
| 250 |
+
lut_arr = np.array(lut, dtype=np.float32)
|
| 251 |
+
|
| 252 |
+
# If single channel LUT (N,) expand to three channels
|
| 253 |
+
if lut_arr.ndim == 1:
|
| 254 |
+
lut_arr = np.stack([lut_arr, lut_arr, lut_arr], axis=1) # (N,3)
|
| 255 |
+
|
| 256 |
+
if lut_arr.shape[1] != 3:
|
| 257 |
+
raise ValueError("1D LUT must have shape (N,) or (N,3)")
|
| 258 |
+
|
| 259 |
+
# Build index positions in source LUT space (0..255)
|
| 260 |
+
N = lut_arr.shape[0]
|
| 261 |
+
src_positions = np.linspace(0, 255, N)
|
| 262 |
+
|
| 263 |
+
# Flatten and interpolate per channel
|
| 264 |
+
out = np.empty_like(arr)
|
| 265 |
+
for c in range(3):
|
| 266 |
+
channel = arr[..., c].ravel()
|
| 267 |
+
mapped = np.interp(channel, src_positions, lut_arr[:, c])
|
| 268 |
+
out[..., c] = mapped.reshape(arr.shape[0], arr.shape[1])
|
| 269 |
+
|
| 270 |
+
out = np.clip(out, 0, 255).astype(np.uint8)
|
| 271 |
+
if strength >= 1.0:
|
| 272 |
+
return out
|
| 273 |
+
else:
|
| 274 |
+
blended = ((1.0 - strength) * img_arr.astype(np.float32) + strength * out.astype(np.float32))
|
| 275 |
+
return np.clip(blended, 0, 255).astype(np.uint8)
|
| 276 |
+
|
| 277 |
+
def _trilinear_sample_lut(img_float: np.ndarray, lut: np.ndarray) -> np.ndarray:
|
| 278 |
+
"""
|
| 279 |
+
Vectorized trilinear sampling of 3D LUT.
|
| 280 |
+
- img_float: HxWx3 floats in [0,1]
|
| 281 |
+
- lut: SxSxS x 3 floats in [0,1]
|
| 282 |
+
Returns HxWx3 floats in [0,1]
|
| 283 |
+
"""
|
| 284 |
+
S = lut.shape[0]
|
| 285 |
+
if lut.shape[0] != lut.shape[1] or lut.shape[1] != lut.shape[2]:
|
| 286 |
+
raise ValueError("3D LUT must be cubic (SxSxSx3)")
|
| 287 |
+
|
| 288 |
+
# map [0,1] -> [0, S-1]
|
| 289 |
+
idx = img_float * (S - 1)
|
| 290 |
+
r_idx = idx[..., 0]
|
| 291 |
+
g_idx = idx[..., 1]
|
| 292 |
+
b_idx = idx[..., 2]
|
| 293 |
+
|
| 294 |
+
r0 = np.floor(r_idx).astype(np.int32)
|
| 295 |
+
g0 = np.floor(g_idx).astype(np.int32)
|
| 296 |
+
b0 = np.floor(b_idx).astype(np.int32)
|
| 297 |
+
|
| 298 |
+
r1 = np.clip(r0 + 1, 0, S - 1)
|
| 299 |
+
g1 = np.clip(g0 + 1, 0, S - 1)
|
| 300 |
+
b1 = np.clip(b0 + 1, 0, S - 1)
|
| 301 |
+
|
| 302 |
+
dr = (r_idx - r0)[..., None]
|
| 303 |
+
dg = (g_idx - g0)[..., None]
|
| 304 |
+
db = (b_idx - b0)[..., None]
|
| 305 |
+
|
| 306 |
+
# gather 8 corners: c000 ... c111
|
| 307 |
+
c000 = lut[r0, g0, b0]
|
| 308 |
+
c001 = lut[r0, g0, b1]
|
| 309 |
+
c010 = lut[r0, g1, b0]
|
| 310 |
+
c011 = lut[r0, g1, b1]
|
| 311 |
+
c100 = lut[r1, g0, b0]
|
| 312 |
+
c101 = lut[r1, g0, b1]
|
| 313 |
+
c110 = lut[r1, g1, b0]
|
| 314 |
+
c111 = lut[r1, g1, b1]
|
| 315 |
+
|
| 316 |
+
# interpolate along b
|
| 317 |
+
c00 = c000 * (1 - db) + c001 * db
|
| 318 |
+
c01 = c010 * (1 - db) + c011 * db
|
| 319 |
+
c10 = c100 * (1 - db) + c101 * db
|
| 320 |
+
c11 = c110 * (1 - db) + c111 * db
|
| 321 |
+
|
| 322 |
+
# interpolate along g
|
| 323 |
+
c0 = c00 * (1 - dg) + c01 * dg
|
| 324 |
+
c1 = c10 * (1 - dg) + c11 * dg
|
| 325 |
+
|
| 326 |
+
# interpolate along r
|
| 327 |
+
c = c0 * (1 - dr) + c1 * dr
|
| 328 |
+
|
| 329 |
+
return c # float in same range as lut (expected [0,1])
|
| 330 |
+
|
| 331 |
+
def apply_3d_lut(img_arr: np.ndarray, lut3d: np.ndarray, strength: float = 1.0) -> np.ndarray:
|
| 332 |
+
"""
|
| 333 |
+
Apply a 3D LUT to the image.
|
| 334 |
+
- img_arr: HxWx3 uint8
|
| 335 |
+
- lut3d: SxSxSx3 float (expected range 0..1)
|
| 336 |
+
- strength: blending 0..1
|
| 337 |
+
Returns uint8 image.
|
| 338 |
+
"""
|
| 339 |
+
if img_arr.ndim != 3 or img_arr.shape[2] != 3:
|
| 340 |
+
raise ValueError("apply_3d_lut expects an HxWx3 image array")
|
| 341 |
+
|
| 342 |
+
img_float = img_arr.astype(np.float32) / 255.0
|
| 343 |
+
sampled = _trilinear_sample_lut(img_float, lut3d) # HxWx3 floats in [0,1]
|
| 344 |
+
out = np.clip(sampled * 255.0, 0, 255).astype(np.uint8)
|
| 345 |
+
if strength >= 1.0:
|
| 346 |
+
return out
|
| 347 |
+
else:
|
| 348 |
+
blended = ((1.0 - strength) * img_arr.astype(np.float32) + strength * out.astype(np.float32))
|
| 349 |
+
return np.clip(blended, 0, 255).astype(np.uint8)
|
| 350 |
+
|
| 351 |
+
def apply_lut(img_arr: np.ndarray, lut: np.ndarray, strength: float = 1.0) -> np.ndarray:
|
| 352 |
+
"""
|
| 353 |
+
Auto-detect LUT type and apply.
|
| 354 |
+
- If lut.ndim in (1,2) treat as 1D LUT (per-channel if shape (N,3)).
|
| 355 |
+
- If lut.ndim == 4 treat as 3D LUT (SxSxSx3) in [0,1].
|
| 356 |
+
"""
|
| 357 |
+
lut = np.array(lut)
|
| 358 |
+
if lut.ndim == 4 and lut.shape[3] == 3:
|
| 359 |
+
# 3D LUT (assumed normalized [0..1])
|
| 360 |
+
# If lut is in 0..255, normalize
|
| 361 |
+
if lut.dtype != np.float32 and lut.max() > 1.0:
|
| 362 |
+
lut = lut.astype(np.float32) / 255.0
|
| 363 |
+
return apply_3d_lut(img_arr, lut, strength=strength)
|
| 364 |
+
elif lut.ndim in (1, 2):
|
| 365 |
+
return apply_1d_lut(img_arr, lut, strength=strength)
|
| 366 |
+
else:
|
| 367 |
+
raise ValueError("Unsupported LUT shape: {}".format(lut.shape))
|
| 368 |
+
|
| 369 |
+
def load_cube_lut(path: str) -> np.ndarray:
|
| 370 |
+
"""
|
| 371 |
+
Parse a .cube file and return a 3D LUT array of shape (S,S,S,3) with float values in [0,1].
|
| 372 |
+
Note: .cube file order sometimes varies; this function assumes standard ordering
|
| 373 |
+
where data lines are triples of floats and LUT_3D_SIZE specifies S.
|
| 374 |
+
"""
|
| 375 |
+
with open(path, 'r', encoding='utf-8', errors='ignore') as f:
|
| 376 |
+
lines = [ln.strip() for ln in f if ln.strip() and not ln.strip().startswith('#')]
|
| 377 |
+
|
| 378 |
+
size = None
|
| 379 |
+
data = []
|
| 380 |
+
domain_min = np.array([0.0, 0.0, 0.0], dtype=np.float32)
|
| 381 |
+
domain_max = np.array([1.0, 1.0, 1.0], dtype=np.float32)
|
| 382 |
+
|
| 383 |
+
for ln in lines:
|
| 384 |
+
if ln.upper().startswith('LUT_3D_SIZE'):
|
| 385 |
+
parts = ln.split()
|
| 386 |
+
if len(parts) >= 2:
|
| 387 |
+
size = int(parts[1])
|
| 388 |
+
elif ln.upper().startswith('DOMAIN_MIN'):
|
| 389 |
+
parts = ln.split()
|
| 390 |
+
domain_min = np.array([float(p) for p in parts[1:4]], dtype=np.float32)
|
| 391 |
+
elif ln.upper().startswith('DOMAIN_MAX'):
|
| 392 |
+
parts = ln.split()
|
| 393 |
+
domain_max = np.array([float(p) for p in parts[1:4]], dtype=np.float32)
|
| 394 |
+
elif re.match(r'^-?\d+(\.\d+)?\s+-?\d+(\.\d+)?\s+-?\d+(\.\d+)?$', ln):
|
| 395 |
+
parts = [float(x) for x in ln.split()]
|
| 396 |
+
data.append(parts)
|
| 397 |
+
|
| 398 |
+
if size is None:
|
| 399 |
+
raise ValueError("LUT_3D_SIZE not found in .cube file: {}".format(path))
|
| 400 |
+
|
| 401 |
+
data = np.array(data, dtype=np.float32)
|
| 402 |
+
if data.shape[0] != size**3:
|
| 403 |
+
raise ValueError("Cube LUT data length does not match size^3 (got {}, expected {})".format(data.shape[0], size**3))
|
| 404 |
+
|
| 405 |
+
# Data ordering in many .cube files is: for r in 0..S-1: for g in 0..S-1: for b in 0..S-1: write RGB
|
| 406 |
+
# We'll reshape into (S,S,S,3) with indices [r,g,b]
|
| 407 |
+
lut = data.reshape((size, size, size, 3))
|
| 408 |
+
# Map domain_min..domain_max to 0..1 if domain specified (rare)
|
| 409 |
+
if not np.allclose(domain_min, [0.0, 0.0, 0.0]) or not np.allclose(domain_max, [1.0, 1.0, 1.0]):
|
| 410 |
+
# scale lut values from domain range into 0..1
|
| 411 |
+
lut = (lut - domain_min) / (domain_max - domain_min + 1e-12)
|
| 412 |
+
lut = np.clip(lut, 0.0, 1.0)
|
| 413 |
+
else:
|
| 414 |
+
# ensure LUT is in [0,1] if not already
|
| 415 |
+
if lut.max() > 1.0 + 1e-6:
|
| 416 |
+
lut = lut / 255.0
|
| 417 |
+
return lut.astype(np.float32)
|
| 418 |
+
|
| 419 |
+
def load_lut(path: str) -> np.ndarray:
|
| 420 |
+
"""
|
| 421 |
+
Load a LUT from:
|
| 422 |
+
- .npy (numpy saved array)
|
| 423 |
+
- .cube (3D LUT)
|
| 424 |
+
- image (PNG/JPG) that is a 1D LUT strip (common 256x1 or 1x256)
|
| 425 |
+
Returns numpy array (1D, 2D, or 4D LUT).
|
| 426 |
+
"""
|
| 427 |
+
ext = os.path.splitext(path)[1].lower()
|
| 428 |
+
if ext == '.npy':
|
| 429 |
+
return np.load(path)
|
| 430 |
+
elif ext == '.cube':
|
| 431 |
+
return load_cube_lut(path)
|
| 432 |
+
else:
|
| 433 |
+
# try interpreting as image-based 1D LUT
|
| 434 |
+
try:
|
| 435 |
+
im = Image.open(path).convert('RGB')
|
| 436 |
+
arr = np.array(im)
|
| 437 |
+
h, w = arr.shape[:2]
|
| 438 |
+
# 256x1 or 1x256 typical 1D LUT
|
| 439 |
+
if (w == 256 and h == 1) or (h == 256 and w == 1):
|
| 440 |
+
if h == 1:
|
| 441 |
+
lut = arr[0, :, :].astype(np.float32)
|
| 442 |
+
else:
|
| 443 |
+
lut = arr[:, 0, :].astype(np.float32)
|
| 444 |
+
return lut # shape (256,3)
|
| 445 |
+
# sometimes embedded as 512x16 or other tile layouts; attempt to flatten
|
| 446 |
+
# fallback: flatten and try to build (N,3)
|
| 447 |
+
flat = arr.reshape(-1, 3).astype(np.float32)
|
| 448 |
+
# if length is perfect power-of-two and <= 1024, assume 1D
|
| 449 |
+
L = flat.shape[0]
|
| 450 |
+
if L <= 4096:
|
| 451 |
+
return flat # (L,3)
|
| 452 |
+
raise ValueError("Image LUT not recognized size")
|
| 453 |
+
except Exception as e:
|
| 454 |
+
raise ValueError(f"Unsupported LUT file or parse error for {path}: {e}")
|
| 455 |
+
|
| 456 |
+
# --- end appended LUT helpers
|
run.py
CHANGED
|
@@ -1,6 +1,8 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
Main GUI application for image_postprocess pipeline with camera-simulator controls.
|
|
|
|
|
|
|
| 4 |
"""
|
| 5 |
|
| 6 |
import sys
|
|
@@ -9,7 +11,7 @@ from pathlib import Path
|
|
| 9 |
from PyQt5.QtWidgets import (
|
| 10 |
QApplication, QMainWindow, QWidget, QLabel, QPushButton, QFileDialog,
|
| 11 |
QHBoxLayout, QVBoxLayout, QFormLayout, QSlider, QSpinBox, QDoubleSpinBox,
|
| 12 |
-
QProgressBar, QMessageBox, QLineEdit, QComboBox, QCheckBox, QToolButton
|
| 13 |
)
|
| 14 |
from PyQt5.QtCore import Qt
|
| 15 |
from PyQt5.QtGui import QPixmap
|
|
@@ -100,9 +102,15 @@ class MainWindow(QMainWindow):
|
|
| 100 |
self.progress.setValue(0)
|
| 101 |
left_v.addWidget(self.progress)
|
| 102 |
|
| 103 |
-
# Right: controls + analysis panels
|
| 104 |
-
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
# Auto Mode toggle (keeps top-level quick switch visible)
|
| 108 |
self.auto_mode_chk = QCheckBox("Enable Auto Mode")
|
|
@@ -233,6 +241,37 @@ class MainWindow(QMainWindow):
|
|
| 233 |
self.sim_camera_chk.stateChanged.connect(self._on_sim_camera_toggled)
|
| 234 |
params_layout.addRow(self.sim_camera_chk)
|
| 235 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
# Camera simulator collapsible group
|
| 237 |
self.camera_box = CollapsibleBox("Camera simulator options")
|
| 238 |
right_v.addWidget(self.camera_box)
|
|
@@ -374,6 +413,16 @@ class MainWindow(QMainWindow):
|
|
| 374 |
if path:
|
| 375 |
self.output_line.setText(path)
|
| 376 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 377 |
def load_preview(self, widget: QLabel, path: str):
|
| 378 |
if not path or not os.path.exists(path):
|
| 379 |
widget.setText("No image")
|
|
@@ -469,6 +518,15 @@ class MainWindow(QMainWindow):
|
|
| 469 |
# FFT spectral matching reference
|
| 470 |
args.fft_ref = fft_ref_val
|
| 471 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 472 |
self.worker = Worker(inpath, outpath, args)
|
| 473 |
self.worker.finished.connect(self.on_finished)
|
| 474 |
self.worker.error.connect(self.on_error)
|
|
@@ -544,4 +602,4 @@ def main():
|
|
| 544 |
sys.exit(app.exec_())
|
| 545 |
|
| 546 |
if __name__ == '__main__':
|
| 547 |
-
main()
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
Main GUI application for image_postprocess pipeline with camera-simulator controls.
|
| 4 |
+
|
| 5 |
+
Updated: added LUT support UI (enable checkbox, file chooser, strength) and wiring to on_run.
|
| 6 |
"""
|
| 7 |
|
| 8 |
import sys
|
|
|
|
| 11 |
from PyQt5.QtWidgets import (
|
| 12 |
QApplication, QMainWindow, QWidget, QLabel, QPushButton, QFileDialog,
|
| 13 |
QHBoxLayout, QVBoxLayout, QFormLayout, QSlider, QSpinBox, QDoubleSpinBox,
|
| 14 |
+
QProgressBar, QMessageBox, QLineEdit, QComboBox, QCheckBox, QToolButton, QScrollArea
|
| 15 |
)
|
| 16 |
from PyQt5.QtCore import Qt
|
| 17 |
from PyQt5.QtGui import QPixmap
|
|
|
|
| 102 |
self.progress.setValue(0)
|
| 103 |
left_v.addWidget(self.progress)
|
| 104 |
|
| 105 |
+
# Right: controls + analysis panels (with scroll area)
|
| 106 |
+
scroll_area = QScrollArea()
|
| 107 |
+
scroll_area.setWidgetResizable(True)
|
| 108 |
+
scroll_area.setStyleSheet("QScrollArea { border: none; }")
|
| 109 |
+
main_h.addWidget(scroll_area, 3)
|
| 110 |
+
|
| 111 |
+
scroll_widget = QWidget()
|
| 112 |
+
right_v = QVBoxLayout(scroll_widget)
|
| 113 |
+
scroll_area.setWidget(scroll_widget)
|
| 114 |
|
| 115 |
# Auto Mode toggle (keeps top-level quick switch visible)
|
| 116 |
self.auto_mode_chk = QCheckBox("Enable Auto Mode")
|
|
|
|
| 241 |
self.sim_camera_chk.stateChanged.connect(self._on_sim_camera_toggled)
|
| 242 |
params_layout.addRow(self.sim_camera_chk)
|
| 243 |
|
| 244 |
+
# --- LUT support UI ---
|
| 245 |
+
self.lut_chk = QCheckBox("Enable LUT")
|
| 246 |
+
self.lut_chk.setChecked(False)
|
| 247 |
+
self.lut_chk.setToolTip("Enable applying a 1D/.npy/.cube LUT to the output image")
|
| 248 |
+
self.lut_chk.stateChanged.connect(self._on_lut_toggled)
|
| 249 |
+
params_layout.addRow(self.lut_chk)
|
| 250 |
+
|
| 251 |
+
# LUT chooser (hidden until checkbox checked)
|
| 252 |
+
self.lut_line = QLineEdit()
|
| 253 |
+
self.lut_btn = QPushButton("Choose LUT")
|
| 254 |
+
self.lut_btn.clicked.connect(self.choose_lut)
|
| 255 |
+
lut_box = QWidget()
|
| 256 |
+
lut_box_layout = QHBoxLayout()
|
| 257 |
+
lut_box_layout.setContentsMargins(0, 0, 0, 0)
|
| 258 |
+
lut_box.setLayout(lut_box_layout)
|
| 259 |
+
lut_box_layout.addWidget(self.lut_line)
|
| 260 |
+
lut_box_layout.addWidget(self.lut_btn)
|
| 261 |
+
params_layout.addRow("LUT file (png/.npy/.cube)", lut_box)
|
| 262 |
+
|
| 263 |
+
self.lut_strength_spin = QDoubleSpinBox()
|
| 264 |
+
self.lut_strength_spin.setRange(0.0, 1.0)
|
| 265 |
+
self.lut_strength_spin.setSingleStep(0.01)
|
| 266 |
+
self.lut_strength_spin.setValue(1.0)
|
| 267 |
+
self.lut_strength_spin.setToolTip("Blend strength for LUT (0.0 = no effect, 1.0 = full LUT)")
|
| 268 |
+
params_layout.addRow("LUT strength", self.lut_strength_spin)
|
| 269 |
+
|
| 270 |
+
# Initially hide LUT controls
|
| 271 |
+
lut_box.setVisible(False)
|
| 272 |
+
self.lut_strength_spin.setVisible(False)
|
| 273 |
+
self._lut_controls = (lut_box, self.lut_strength_spin)
|
| 274 |
+
|
| 275 |
# Camera simulator collapsible group
|
| 276 |
self.camera_box = CollapsibleBox("Camera simulator options")
|
| 277 |
right_v.addWidget(self.camera_box)
|
|
|
|
| 413 |
if path:
|
| 414 |
self.output_line.setText(path)
|
| 415 |
|
| 416 |
+
def choose_lut(self):
|
| 417 |
+
path, _ = QFileDialog.getOpenFileName(self, "Choose LUT file", str(Path.home()), "LUTs (*.png *.npy *.cube);;All files (*)")
|
| 418 |
+
if path:
|
| 419 |
+
self.lut_line.setText(path)
|
| 420 |
+
|
| 421 |
+
def _on_lut_toggled(self, state):
|
| 422 |
+
visible = (state == Qt.Checked)
|
| 423 |
+
for w in self._lut_controls:
|
| 424 |
+
w.setVisible(visible)
|
| 425 |
+
|
| 426 |
def load_preview(self, widget: QLabel, path: str):
|
| 427 |
if not path or not os.path.exists(path):
|
| 428 |
widget.setText("No image")
|
|
|
|
| 518 |
# FFT spectral matching reference
|
| 519 |
args.fft_ref = fft_ref_val
|
| 520 |
|
| 521 |
+
# LUT handling: only include if LUT checkbox is checked and a path is provided
|
| 522 |
+
if self.lut_chk.isChecked():
|
| 523 |
+
lut_path = self.lut_line.text().strip()
|
| 524 |
+
args.lut = lut_path if lut_path else None
|
| 525 |
+
args.lut_strength = float(self.lut_strength_spin.value())
|
| 526 |
+
else:
|
| 527 |
+
args.lut = None
|
| 528 |
+
args.lut_strength = 1.0
|
| 529 |
+
|
| 530 |
self.worker = Worker(inpath, outpath, args)
|
| 531 |
self.worker.finished.connect(self.on_finished)
|
| 532 |
self.worker.error.connect(self.on_error)
|
|
|
|
| 602 |
sys.exit(app.exec_())
|
| 603 |
|
| 604 |
if __name__ == '__main__':
|
| 605 |
+
main()
|