Refactored for Gradio / HF Spaces usage.
Browse files- Introduced `app_gradio.py` for a lightweight Gradio front-end to the image processing pipeline.
- Updated README.md with instructions for running the Gradio app locally and deploying to Hugging Face Spaces.
- Fixed channel reversal issue in camera pipeline simulation.
- Updated requirements.txt to include Gradio and removed PyQt5.
- Added test scripts for Gradio functionality and processing validation.
- README.md +44 -0
- app_gradio.py +661 -0
- image_postprocess/camera_pipeline.py +3 -1
- requirements.txt +1 -1
- test_isolate_stages.py +39 -0
- test_smoke_gradio.py +21 -0
- test_smoke_gradio_debug.py +55 -0
README.md
CHANGED
|
@@ -151,6 +151,50 @@ def process_image(inpath: str, outpath: str, args):
|
|
| 151 |
- PRs welcome. If you modify UI layout or parameter names, keep the `args` mapping consistent or update `README` and `worker.py` accordingly.
|
| 152 |
- Add unit tests for `worker.py` and the parameter serialization if you intend to refactor.
|
| 153 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
---
|
| 155 |
|
| 156 |
## License
|
|
|
|
| 151 |
- PRs welcome. If you modify UI layout or parameter names, keep the `args` mapping consistent or update `README` and `worker.py` accordingly.
|
| 152 |
- Add unit tests for `worker.py` and the parameter serialization if you intend to refactor.
|
| 153 |
|
| 154 |
+
## Gradio / Hugging Face Spaces (Web UI)
|
| 155 |
+
|
| 156 |
+
This repository includes a lightweight Gradio front-end (`app_gradio.py`) that wraps the existing
|
| 157 |
+
`process_image(inpath, outpath, args)` pipeline. The Gradio app is suitable for local testing and
|
| 158 |
+
for deployment to Hugging Face Spaces (Gradio-backed web apps).
|
| 159 |
+
|
| 160 |
+
### Quick local run
|
| 161 |
+
|
| 162 |
+
1. Install dependencies:
|
| 163 |
+
|
| 164 |
+
```bash
|
| 165 |
+
pip install -r requirements.txt
|
| 166 |
+
```
|
| 167 |
+
|
| 168 |
+
2. Launch the Gradio app:
|
| 169 |
+
|
| 170 |
+
```bash
|
| 171 |
+
python3 app_gradio.py
|
| 172 |
+
```
|
| 173 |
+
|
| 174 |
+
Open http://localhost:7860 in your browser. The UI saves the uploaded image to a temporary file,
|
| 175 |
+
calls the existing `process_image` pipeline, and returns the processed image.
|
| 176 |
+
|
| 177 |
+
### Deploying to Hugging Face Spaces
|
| 178 |
+
|
| 179 |
+
1. Ensure the following are present at the repository root:
|
| 180 |
+
- `app_gradio.py` (the Gradio entrypoint)
|
| 181 |
+
- `requirements.txt` (must include `gradio` and any other runtime deps)
|
| 182 |
+
|
| 183 |
+
2. Push the repository to a new Space on Hugging Face (create a new Space and connect this repo or
|
| 184 |
+
push to the Space's Git remote). Spaces will automatically run the Gradio app.
|
| 185 |
+
|
| 186 |
+
Notes & tips for Spaces:
|
| 187 |
+
- Keep default upload/processing sizes modest to avoid long CPU usage in the free tier.
|
| 188 |
+
- If your pipeline uses optional packages (OpenCV, piexif, etc.), make sure they are listed in
|
| 189 |
+
`requirements.txt` so Spaces installs them.
|
| 190 |
+
- If processing is slow, consider reducing default image size or exposing fewer parameters to the
|
| 191 |
+
main UI and keeping advanced controls hidden in an "Advanced" section.
|
| 192 |
+
|
| 193 |
+
### Troubleshooting
|
| 194 |
+
- If Gradio is not installed, `app_gradio.py` will raise an error; add `gradio` to `requirements.txt`.
|
| 195 |
+
- Any import errors from `image_postprocess` will surface when calling the app; run the smoke test
|
| 196 |
+
(`python3 test_smoke_gradio.py`) locally to validate imports and pipeline execution before pushing.
|
| 197 |
+
|
| 198 |
---
|
| 199 |
|
| 200 |
## License
|
app_gradio.py
ADDED
|
@@ -0,0 +1,661 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Gradio web UI wrapper for the Image Postprocess pipeline.
|
| 3 |
+
|
| 4 |
+
This lightweight wrapper saves the uploaded image to a temporary file,
|
| 5 |
+
constructs a minimal args namespace expected by `process_image`, runs the
|
| 6 |
+
processing pipeline, and returns the result to the browser.
|
| 7 |
+
|
| 8 |
+
Designed for quick deployment on Huggingface Spaces.
|
| 9 |
+
"""
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
import tempfile
|
| 12 |
+
import os
|
| 13 |
+
from types import SimpleNamespace
|
| 14 |
+
from typing import Optional
|
| 15 |
+
from PIL import Image
|
| 16 |
+
import io
|
| 17 |
+
import matplotlib.pyplot as plt
|
| 18 |
+
import numpy as np
|
| 19 |
+
import json
|
| 20 |
+
|
| 21 |
+
# Preset persistence file (in repo root)
|
| 22 |
+
PRESETS_FILE = Path(__file__).parent / "presets.json"
|
| 23 |
+
|
| 24 |
+
# Builtin presets
|
| 25 |
+
BUILTIN_PRESETS = {
|
| 26 |
+
"Default": {},
|
| 27 |
+
"NovaNodes (reference)": {
|
| 28 |
+
"noise_std": 0.02,
|
| 29 |
+
"clahe_clip": 2.0,
|
| 30 |
+
"tile": 8,
|
| 31 |
+
"cutoff": 0.25,
|
| 32 |
+
"fstrength": 0.9,
|
| 33 |
+
"randomness": 0.05,
|
| 34 |
+
# align perturb with NovaNodes default
|
| 35 |
+
"perturb": 0.01,
|
| 36 |
+
"phase_perturb": 0.08,
|
| 37 |
+
"radial_smooth": 5,
|
| 38 |
+
"jpeg_cycles": 1,
|
| 39 |
+
"jpeg_qmin": 88,
|
| 40 |
+
# camera simulation enabled by default for 'reference'
|
| 41 |
+
"sim_camera": True,
|
| 42 |
+
"vignette_strength": 0.35,
|
| 43 |
+
"chroma_strength": 1.2,
|
| 44 |
+
"iso_scale": 1.0,
|
| 45 |
+
"read_noise": 2.0,
|
| 46 |
+
# align hot pixel probability with NovaNodes default
|
| 47 |
+
"hot_pixel_prob": 1e-7,
|
| 48 |
+
"no_no_bayer": False,
|
| 49 |
+
# align LUT strength to node default (1.0)
|
| 50 |
+
"lut_strength": 1.0,
|
| 51 |
+
},
|
| 52 |
+
"High JPEG cycles": {"jpeg_cycles": 3, "jpeg_qmin": 70},
|
| 53 |
+
"Aggressive": {"noise_std": 0.06, "fstrength": 1.0, "perturb": 0.02, "jpeg_cycles": 2},
|
| 54 |
+
"Subtle": {"noise_std": 0.01, "fstrength": 0.6},
|
| 55 |
+
|
| 56 |
+
# Conservative preview preset (closer to input image): disables camera simulation
|
| 57 |
+
"Preview (no camera sim)": {"sim_camera": False, "noise_std": 0.01, "fstrength": 0.6},
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def load_custom_presets():
|
| 62 |
+
if PRESETS_FILE.exists():
|
| 63 |
+
try:
|
| 64 |
+
return json.loads(PRESETS_FILE.read_text())
|
| 65 |
+
except Exception:
|
| 66 |
+
return {}
|
| 67 |
+
return {}
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def save_custom_preset(name: str, data: dict):
|
| 71 |
+
presets = load_custom_presets()
|
| 72 |
+
presets[name] = data
|
| 73 |
+
PRESETS_FILE.write_text(json.dumps(presets, indent=2))
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def get_preset_overrides(name: str):
|
| 77 |
+
if name in BUILTIN_PRESETS:
|
| 78 |
+
return BUILTIN_PRESETS[name].copy()
|
| 79 |
+
customs = load_custom_presets()
|
| 80 |
+
return customs.get(name, {}).copy()
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def preset_summary(name: str):
|
| 84 |
+
overrides = get_preset_overrides(name)
|
| 85 |
+
if not overrides:
|
| 86 |
+
return "(no overrides)"
|
| 87 |
+
return json.dumps(overrides, indent=2)
|
| 88 |
+
|
| 89 |
+
gr = None
|
| 90 |
+
|
| 91 |
+
try:
|
| 92 |
+
from image_postprocess import process_image
|
| 93 |
+
except Exception as e:
|
| 94 |
+
process_image = None
|
| 95 |
+
IMPORT_ERROR = str(e)
|
| 96 |
+
else:
|
| 97 |
+
IMPORT_ERROR = None
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def _mk_temp_file(suffix: str = ".png") -> str:
|
| 101 |
+
f = tempfile.NamedTemporaryFile(suffix=suffix, delete=False)
|
| 102 |
+
f.close()
|
| 103 |
+
return f.name
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def run_process(
|
| 107 |
+
img: Image.Image,
|
| 108 |
+
noise_std: float = 0.02,
|
| 109 |
+
clahe_clip: float = 2.0,
|
| 110 |
+
tile: int = 8,
|
| 111 |
+
cutoff: float = 0.25,
|
| 112 |
+
fstrength: float = 0.9,
|
| 113 |
+
awb: bool = True,
|
| 114 |
+
sim_camera: bool = True,
|
| 115 |
+
lut_file: Optional[Path] = None,
|
| 116 |
+
lut_strength: float = 0.1,
|
| 117 |
+
):
|
| 118 |
+
"""Run the repository's processing pipeline on a PIL image and return a PIL image.
|
| 119 |
+
|
| 120 |
+
Returns (pil.Image or None, status string).
|
| 121 |
+
"""
|
| 122 |
+
if process_image is None:
|
| 123 |
+
return None, f"Backend import error: {IMPORT_ERROR}"
|
| 124 |
+
|
| 125 |
+
tmp_files = []
|
| 126 |
+
try:
|
| 127 |
+
in_path = _mk_temp_file(suffix=".png")
|
| 128 |
+
img.save(in_path)
|
| 129 |
+
tmp_files.append(in_path)
|
| 130 |
+
|
| 131 |
+
out_path = _mk_temp_file(suffix=".jpg")
|
| 132 |
+
tmp_files.append(out_path)
|
| 133 |
+
|
| 134 |
+
lut_path = None
|
| 135 |
+
if lut_file is not None:
|
| 136 |
+
# gr.File gives a pathlib.Path-like object; accept either str or Path
|
| 137 |
+
lut_path = str(lut_file)
|
| 138 |
+
|
| 139 |
+
args = SimpleNamespace(
|
| 140 |
+
input=in_path,
|
| 141 |
+
output=out_path,
|
| 142 |
+
awb=bool(awb),
|
| 143 |
+
ref=None,
|
| 144 |
+
noise_std=float(noise_std),
|
| 145 |
+
clahe_clip=float(clahe_clip),
|
| 146 |
+
tile=int(tile),
|
| 147 |
+
cutoff=float(cutoff),
|
| 148 |
+
fstrength=float(fstrength),
|
| 149 |
+
randomness=0.05,
|
| 150 |
+
perturb=0.008,
|
| 151 |
+
seed=None,
|
| 152 |
+
fft_ref=None,
|
| 153 |
+
fft_mode="auto",
|
| 154 |
+
fft_alpha=1.0,
|
| 155 |
+
phase_perturb=0.08,
|
| 156 |
+
radial_smooth=5,
|
| 157 |
+
sim_camera=bool(sim_camera),
|
| 158 |
+
no_no_bayer=False,
|
| 159 |
+
jpeg_cycles=1,
|
| 160 |
+
jpeg_qmin=88,
|
| 161 |
+
jpeg_qmax=96,
|
| 162 |
+
vignette_strength=0.35,
|
| 163 |
+
chroma_strength=1.2,
|
| 164 |
+
iso_scale=1.0,
|
| 165 |
+
read_noise=2.0,
|
| 166 |
+
hot_pixel_prob=1e-6,
|
| 167 |
+
banding_strength=0.0,
|
| 168 |
+
motion_blur_kernel=1,
|
| 169 |
+
lut=(lut_path if lut_path else None),
|
| 170 |
+
lut_strength=float(lut_strength),
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
# Debug: print args passed to process_image for tracing
|
| 174 |
+
try:
|
| 175 |
+
print("process_image called with args:")
|
| 176 |
+
for k, v in vars(args).items():
|
| 177 |
+
print(f" {k}: {v}")
|
| 178 |
+
except Exception:
|
| 179 |
+
pass
|
| 180 |
+
|
| 181 |
+
try:
|
| 182 |
+
process_image(in_path, out_path, args)
|
| 183 |
+
except Exception as e:
|
| 184 |
+
return None, f"Processing error: {e}"
|
| 185 |
+
|
| 186 |
+
out_img = Image.open(out_path).convert("RGB")
|
| 187 |
+
return out_img, "OK"
|
| 188 |
+
|
| 189 |
+
finally:
|
| 190 |
+
for p in tmp_files:
|
| 191 |
+
try:
|
| 192 |
+
os.unlink(p)
|
| 193 |
+
except Exception:
|
| 194 |
+
pass
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
def run_process_with_exif(
|
| 198 |
+
img: Image.Image,
|
| 199 |
+
noise_std: float = 0.02,
|
| 200 |
+
clahe_clip: float = 2.0,
|
| 201 |
+
tile: int = 8,
|
| 202 |
+
cutoff: float = 0.25,
|
| 203 |
+
fstrength: float = 0.9,
|
| 204 |
+
awb: bool = True,
|
| 205 |
+
sim_camera: bool = True,
|
| 206 |
+
lut_file: Optional[Path] = None,
|
| 207 |
+
lut_strength: float = 0.1,
|
| 208 |
+
awb_ref: Optional[Image.Image] = None,
|
| 209 |
+
fft_ref: Optional[Image.Image] = None,
|
| 210 |
+
seed: Optional[int] = None,
|
| 211 |
+
jpeg_cycles: int = 1,
|
| 212 |
+
jpeg_qmin: int = 88,
|
| 213 |
+
jpeg_qmax: int = 96,
|
| 214 |
+
vignette_strength: float = 0.35,
|
| 215 |
+
chroma_strength: float = 1.2,
|
| 216 |
+
iso_scale: float = 1.0,
|
| 217 |
+
read_noise: float = 2.0,
|
| 218 |
+
no_no_bayer: bool = False,
|
| 219 |
+
randomness: float = 0.05,
|
| 220 |
+
perturb: float = 0.008,
|
| 221 |
+
phase_perturb: float = 0.08,
|
| 222 |
+
radial_smooth: int = 5,
|
| 223 |
+
fft_mode: str = "auto",
|
| 224 |
+
fft_alpha: float = 1.0,
|
| 225 |
+
apply_exif: bool = True,
|
| 226 |
+
hot_pixel_prob: float = 1e-6,
|
| 227 |
+
banding_strength: float = 0.0,
|
| 228 |
+
motion_blur_kernel: int = 1,
|
| 229 |
+
):
|
| 230 |
+
"""Run pipeline like `run_process` but return (pil_img, status, exif_hex_or_empty).
|
| 231 |
+
|
| 232 |
+
This function is used by the Gradio UI to expose EXIF metadata.
|
| 233 |
+
"""
|
| 234 |
+
if process_image is None:
|
| 235 |
+
return None, f"Backend import error: {IMPORT_ERROR}", ""
|
| 236 |
+
|
| 237 |
+
tmp_files = []
|
| 238 |
+
try:
|
| 239 |
+
in_path = _mk_temp_file(suffix=".png")
|
| 240 |
+
img.save(in_path)
|
| 241 |
+
tmp_files.append(in_path)
|
| 242 |
+
|
| 243 |
+
# optional refs
|
| 244 |
+
awb_ref_path = None
|
| 245 |
+
if awb_ref is not None:
|
| 246 |
+
p = _mk_temp_file(suffix=".png")
|
| 247 |
+
awb_ref.save(p)
|
| 248 |
+
awb_ref_path = p
|
| 249 |
+
tmp_files.append(p)
|
| 250 |
+
|
| 251 |
+
fft_ref_path = None
|
| 252 |
+
if fft_ref is not None:
|
| 253 |
+
p = _mk_temp_file(suffix=".png")
|
| 254 |
+
fft_ref.save(p)
|
| 255 |
+
fft_ref_path = p
|
| 256 |
+
tmp_files.append(p)
|
| 257 |
+
|
| 258 |
+
out_path = _mk_temp_file(suffix=".jpg")
|
| 259 |
+
tmp_files.append(out_path)
|
| 260 |
+
|
| 261 |
+
lut_path = None
|
| 262 |
+
if lut_file is not None:
|
| 263 |
+
lut_path = str(lut_file)
|
| 264 |
+
|
| 265 |
+
args = SimpleNamespace(
|
| 266 |
+
input=in_path,
|
| 267 |
+
output=out_path,
|
| 268 |
+
awb=bool(awb),
|
| 269 |
+
ref=awb_ref_path,
|
| 270 |
+
noise_std=float(noise_std),
|
| 271 |
+
clahe_clip=float(clahe_clip),
|
| 272 |
+
tile=int(tile),
|
| 273 |
+
cutoff=float(cutoff),
|
| 274 |
+
fstrength=float(fstrength),
|
| 275 |
+
randomness=float(randomness),
|
| 276 |
+
perturb=float(perturb),
|
| 277 |
+
seed=seed,
|
| 278 |
+
fft_ref=fft_ref_path,
|
| 279 |
+
fft_mode=fft_mode,
|
| 280 |
+
fft_alpha=float(fft_alpha),
|
| 281 |
+
phase_perturb=float(phase_perturb),
|
| 282 |
+
radial_smooth=int(radial_smooth),
|
| 283 |
+
sim_camera=bool(sim_camera),
|
| 284 |
+
no_no_bayer=bool(no_no_bayer),
|
| 285 |
+
jpeg_cycles=int(jpeg_cycles),
|
| 286 |
+
jpeg_qmin=int(jpeg_qmin),
|
| 287 |
+
jpeg_qmax=int(jpeg_qmax),
|
| 288 |
+
vignette_strength=float(vignette_strength),
|
| 289 |
+
chroma_strength=float(chroma_strength),
|
| 290 |
+
iso_scale=float(iso_scale),
|
| 291 |
+
read_noise=float(read_noise),
|
| 292 |
+
hot_pixel_prob=float(hot_pixel_prob),
|
| 293 |
+
banding_strength=float(banding_strength),
|
| 294 |
+
motion_blur_kernel=int(motion_blur_kernel),
|
| 295 |
+
lut=(lut_path if lut_path else None),
|
| 296 |
+
lut_strength=float(lut_strength),
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
# Debug: print args passed to process_image for tracing
|
| 300 |
+
try:
|
| 301 |
+
print("process_image called with args:")
|
| 302 |
+
for k, v in vars(args).items():
|
| 303 |
+
print(f" {k}: {v}")
|
| 304 |
+
except Exception:
|
| 305 |
+
pass
|
| 306 |
+
|
| 307 |
+
try:
|
| 308 |
+
process_image(in_path, out_path, args)
|
| 309 |
+
except Exception as e:
|
| 310 |
+
return None, f"Processing error: {e}", ""
|
| 311 |
+
|
| 312 |
+
out_img = Image.open(out_path).convert("RGB")
|
| 313 |
+
|
| 314 |
+
# try to extract EXIF bytes
|
| 315 |
+
exif_hex = ""
|
| 316 |
+
try:
|
| 317 |
+
info = Image.open(out_path).info
|
| 318 |
+
exif_bytes = info.get('exif')
|
| 319 |
+
if exif_bytes:
|
| 320 |
+
exif_hex = exif_bytes.hex()
|
| 321 |
+
except Exception:
|
| 322 |
+
exif_hex = ""
|
| 323 |
+
|
| 324 |
+
return out_img, "OK", exif_hex
|
| 325 |
+
|
| 326 |
+
finally:
|
| 327 |
+
for p in tmp_files:
|
| 328 |
+
try:
|
| 329 |
+
os.unlink(p)
|
| 330 |
+
except Exception:
|
| 331 |
+
pass
|
| 332 |
+
|
| 333 |
+
# ------------------ Headless analysis helpers (from AnalysisPanel) ------------------
|
| 334 |
+
def pil_to_gray_array(pil_img: Image.Image):
|
| 335 |
+
arr = np.array(pil_img.convert('RGB'))
|
| 336 |
+
gray = (0.299 * arr[:, :, 0] + 0.587 * arr[:, :, 1] + 0.114 * arr[:, :, 2]).astype(np.float32)
|
| 337 |
+
return gray
|
| 338 |
+
|
| 339 |
+
|
| 340 |
+
def compute_fft_magnitude(gray_arr, eps=1e-8):
|
| 341 |
+
f = np.fft.fft2(gray_arr)
|
| 342 |
+
fshift = np.fft.fftshift(f)
|
| 343 |
+
mag = np.abs(fshift)
|
| 344 |
+
mag_log = np.log1p(mag)
|
| 345 |
+
return mag, mag_log
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
def radial_profile(mag, center=None, nbins=100):
|
| 349 |
+
h, w = mag.shape
|
| 350 |
+
if center is None:
|
| 351 |
+
center = (int(h / 2), int(w / 2))
|
| 352 |
+
y, x = np.indices((h, w))
|
| 353 |
+
r = np.sqrt((x - center[1]) ** 2 + (y - center[0]) ** 2)
|
| 354 |
+
r_flat = r.ravel()
|
| 355 |
+
mag_flat = mag.ravel()
|
| 356 |
+
max_r = np.max(r_flat)
|
| 357 |
+
if max_r <= 0:
|
| 358 |
+
return np.linspace(0, 1, nbins), np.zeros(nbins)
|
| 359 |
+
bins = np.linspace(0, max_r, nbins + 1)
|
| 360 |
+
inds = np.digitize(r_flat, bins) - 1
|
| 361 |
+
radial_mean = np.zeros(nbins)
|
| 362 |
+
for i in range(nbins):
|
| 363 |
+
sel = inds == i
|
| 364 |
+
if np.any(sel):
|
| 365 |
+
radial_mean[i] = mag_flat[sel].mean()
|
| 366 |
+
else:
|
| 367 |
+
radial_mean[i] = 0.0
|
| 368 |
+
centers = 0.5 * (bins[:-1] + bins[1:]) / max_r
|
| 369 |
+
return centers, radial_mean
|
| 370 |
+
|
| 371 |
+
|
| 372 |
+
def fig_to_pil(fig):
|
| 373 |
+
buf = io.BytesIO()
|
| 374 |
+
fig.savefig(buf, format='png', bbox_inches='tight')
|
| 375 |
+
plt.close(fig)
|
| 376 |
+
buf.seek(0)
|
| 377 |
+
return Image.open(buf).convert('RGB')
|
| 378 |
+
|
| 379 |
+
|
| 380 |
+
def make_analysis_images(pil_img: Image.Image):
|
| 381 |
+
"""Return (hist_img, fft_img, radial_img) as PIL Images for the provided PIL image."""
|
| 382 |
+
gray = pil_to_gray_array(pil_img)
|
| 383 |
+
|
| 384 |
+
# Histogram
|
| 385 |
+
fig1 = plt.figure(figsize=(3, 2), dpi=100)
|
| 386 |
+
ax1 = fig1.add_subplot(111)
|
| 387 |
+
flat = gray.ravel()
|
| 388 |
+
if flat.dtype.kind == 'f' and flat.max() <= 1.0:
|
| 389 |
+
flat = (flat * 255.0).astype(np.uint8)
|
| 390 |
+
ax1.hist(flat, bins=256, range=(0, 255))
|
| 391 |
+
ax1.set_title('Grayscale histogram')
|
| 392 |
+
ax1.set_xlabel('Intensity')
|
| 393 |
+
ax1.set_ylabel('Count')
|
| 394 |
+
hist_img = fig_to_pil(fig1)
|
| 395 |
+
|
| 396 |
+
# FFT magnitude (log)
|
| 397 |
+
mag, mag_log = compute_fft_magnitude(gray)
|
| 398 |
+
fig2 = plt.figure(figsize=(3, 2), dpi=100)
|
| 399 |
+
ax2 = fig2.add_subplot(111)
|
| 400 |
+
ax2.imshow(mag_log, origin='lower', aspect='auto')
|
| 401 |
+
ax2.set_title('FFT magnitude (log)')
|
| 402 |
+
ax2.set_xticks([])
|
| 403 |
+
ax2.set_yticks([])
|
| 404 |
+
fft_img = fig_to_pil(fig2)
|
| 405 |
+
|
| 406 |
+
# Radial profile
|
| 407 |
+
centers, radial = radial_profile(mag)
|
| 408 |
+
fig3 = plt.figure(figsize=(3, 2), dpi=100)
|
| 409 |
+
ax3 = fig3.add_subplot(111)
|
| 410 |
+
ax3.plot(centers, radial)
|
| 411 |
+
ax3.set_title('Radial freq profile')
|
| 412 |
+
ax3.set_xlabel('Normalized radius')
|
| 413 |
+
ax3.set_ylabel('Mean magnitude')
|
| 414 |
+
radial_img = fig_to_pil(fig3)
|
| 415 |
+
|
| 416 |
+
return hist_img, fft_img, radial_img
|
| 417 |
+
|
| 418 |
+
|
| 419 |
+
def make_delta_image(orig: Image.Image, proc: Image.Image, max_size: int = 256):
|
| 420 |
+
"""Return (diff_pil, mse, norm_diff) comparing orig vs proc.
|
| 421 |
+
|
| 422 |
+
- diff_pil: absolute-difference thumbnail (RGB)
|
| 423 |
+
- mse: mean squared error (float)
|
| 424 |
+
- norm_diff: mean absolute difference normalized to [0..1]
|
| 425 |
+
"""
|
| 426 |
+
try:
|
| 427 |
+
# Downscale to reasonable size for cheap diffing
|
| 428 |
+
orig_small = orig.copy()
|
| 429 |
+
proc_small = proc.copy()
|
| 430 |
+
orig_small.thumbnail((max_size, max_size))
|
| 431 |
+
proc_small.thumbnail((max_size, max_size))
|
| 432 |
+
|
| 433 |
+
a = np.asarray(orig_small).astype(np.float32)
|
| 434 |
+
b = np.asarray(proc_small).astype(np.float32)
|
| 435 |
+
# Ensure same shape
|
| 436 |
+
if a.shape != b.shape:
|
| 437 |
+
# try to convert proc to orig shape via resize
|
| 438 |
+
proc_small = proc_small.resize(orig_small.size)
|
| 439 |
+
b = np.asarray(proc_small).astype(np.float32)
|
| 440 |
+
|
| 441 |
+
diff = np.abs(a - b)
|
| 442 |
+
mse = float(((a - b) ** 2).mean())
|
| 443 |
+
norm_diff = float(diff.mean() / 255.0)
|
| 444 |
+
|
| 445 |
+
# Scale diff for visibility
|
| 446 |
+
diff_vis = np.clip(diff * 4.0, 0, 255).astype(np.uint8)
|
| 447 |
+
diff_img = Image.fromarray(diff_vis)
|
| 448 |
+
metrics = f"MSE: {mse:.2f}\nMean abs diff (norm): {norm_diff:.4f}"
|
| 449 |
+
return diff_img, mse, metrics
|
| 450 |
+
except Exception as e:
|
| 451 |
+
return None, 0.0, f"delta error: {e}"
|
| 452 |
+
|
| 453 |
+
|
| 454 |
+
def build_interface():
|
| 455 |
+
try:
|
| 456 |
+
import gradio as gr
|
| 457 |
+
except Exception:
|
| 458 |
+
raise RuntimeError("Gradio is not installed. Add 'gradio' to requirements.txt and install it.")
|
| 459 |
+
|
| 460 |
+
with gr.Blocks() as demo:
|
| 461 |
+
gr.Markdown("# Image Postprocess — Gradio frontend\nWraps the repository's `process_image` pipeline.")
|
| 462 |
+
|
| 463 |
+
with gr.Row():
|
| 464 |
+
inp = gr.Image(type="pil", label="Input image")
|
| 465 |
+
out = gr.Image(type="pil", label="Processed image")
|
| 466 |
+
|
| 467 |
+
# Preset selector + save/load
|
| 468 |
+
customs = list(load_custom_presets().keys())
|
| 469 |
+
preset_choices = [*BUILTIN_PRESETS.keys(), *customs]
|
| 470 |
+
with gr.Row():
|
| 471 |
+
preset = gr.Dropdown(choices=preset_choices, value="Preview (no camera sim)", label="Preset")
|
| 472 |
+
preset_name = gr.Textbox(label="Save preset as (name)")
|
| 473 |
+
save_preset_btn = gr.Button("Save preset")
|
| 474 |
+
preset_summary_box = gr.Textbox(value=preset_summary("Default"), label="Preset summary", interactive=False)
|
| 475 |
+
|
| 476 |
+
with gr.Row():
|
| 477 |
+
hist_out = gr.Image(type="pil", label="Processed hist")
|
| 478 |
+
fft_out = gr.Image(type="pil", label="Processed FFT")
|
| 479 |
+
radial_out = gr.Image(type="pil", label="Processed radial")
|
| 480 |
+
delta_out = gr.Image(type="pil", label="Diff (abs) thumb")
|
| 481 |
+
delta_metrics = gr.Textbox(label="Delta metrics", interactive=False)
|
| 482 |
+
|
| 483 |
+
# Reference images and EXIF output
|
| 484 |
+
with gr.Row():
|
| 485 |
+
awb_ref = gr.Image(type="pil", label="AWB reference (optional)")
|
| 486 |
+
fft_ref = gr.Image(type="pil", label="FFT reference (optional)")
|
| 487 |
+
exif_out = gr.Textbox(label="EXIF (hex)")
|
| 488 |
+
|
| 489 |
+
with gr.Row():
|
| 490 |
+
noise_std = gr.Slider(0.0, 0.1, value=0.02, step=0.001, label="Noise STD (fraction)")
|
| 491 |
+
clahe_clip = gr.Slider(0.5, 10.0, value=2.0, step=0.1, label="CLAHE clip")
|
| 492 |
+
tile = gr.Slider(2, 32, value=8, step=1, label="CLAHE tile")
|
| 493 |
+
|
| 494 |
+
with gr.Row():
|
| 495 |
+
cutoff = gr.Slider(0.0, 1.0, value=0.25, step=0.01, label="Fourier cutoff")
|
| 496 |
+
fstrength = gr.Slider(0.0, 1.0, value=0.9, step=0.01, label="Fourier strength")
|
| 497 |
+
awb = gr.Checkbox(label="Apply AWB (auto white balance)", value=True)
|
| 498 |
+
|
| 499 |
+
with gr.Row():
|
| 500 |
+
sim_camera = gr.Checkbox(label="Simulate camera pipeline", value=False)
|
| 501 |
+
lut_file = gr.File(label="Optional LUT (png/npy/cube)")
|
| 502 |
+
lut_strength = gr.Slider(0.0, 1.0, value=0.1, step=0.01, label="LUT strength")
|
| 503 |
+
|
| 504 |
+
with gr.Row():
|
| 505 |
+
seed = gr.Number(value=None, label="Seed (integer, optional)")
|
| 506 |
+
jpeg_cycles = gr.Slider(1, 5, value=1, step=1, label="JPEG cycles")
|
| 507 |
+
jpeg_qmin = gr.Slider(30, 100, value=88, step=1, label="JPEG quality (min)")
|
| 508 |
+
|
| 509 |
+
with gr.Row():
|
| 510 |
+
vignette_strength = gr.Slider(0.0, 1.0, value=0.35, step=0.01, label="Vignette strength")
|
| 511 |
+
chroma_strength = gr.Slider(0.0, 5.0, value=1.2, step=0.1, label="Chroma strength")
|
| 512 |
+
iso_scale = gr.Slider(0.1, 16.0, value=1.0, step=0.1, label="ISO scale")
|
| 513 |
+
|
| 514 |
+
with gr.Row():
|
| 515 |
+
read_noise = gr.Slider(0.0, 50.0, value=2.0, step=0.1, label="Read noise")
|
| 516 |
+
no_no_bayer = gr.Checkbox(label="Disable Bayer (no demosaic)", value=False)
|
| 517 |
+
|
| 518 |
+
# Advanced panel for expert parameters
|
| 519 |
+
with gr.Accordion("Advanced parameters (expert)", open=False):
|
| 520 |
+
randomness = gr.Slider(0.0, 0.5, value=0.05, step=0.001, label="Fourier randomness")
|
| 521 |
+
perturb = gr.Slider(0.0, 0.05, value=0.008, step=0.001, label="Perturb magnitude")
|
| 522 |
+
phase_perturb = gr.Slider(0.0, 0.5, value=0.08, step=0.001, label="Phase perturb")
|
| 523 |
+
radial_smooth = gr.Slider(0, 50, value=5, step=1, label="Radial smooth")
|
| 524 |
+
fft_mode = gr.Dropdown(["auto", "ref", "model"], value="auto", label="FFT mode")
|
| 525 |
+
fft_alpha = gr.Slider(0.1, 4.0, value=1.0, step=0.1, label="FFT alpha (1/f)")
|
| 526 |
+
|
| 527 |
+
status = gr.Textbox(label="Status", interactive=False)
|
| 528 |
+
|
| 529 |
+
def _wrap(preset, inp_img, noise_std, clahe_clip, tile, cutoff, fstrength, awb, sim_camera, lut_file, lut_strength, awb_ref, fft_ref, seed, jpeg_cycles, jpeg_qmin, vignette_strength, chroma_strength, iso_scale, read_noise, no_no_bayer, randomness, perturb, phase_perturb, radial_smooth, fft_mode, fft_alpha):
|
| 530 |
+
jpeg_qmax = 96
|
| 531 |
+
lut_path = lut_file.name if getattr(lut_file, 'name', None) else None
|
| 532 |
+
|
| 533 |
+
# Build effective parameters mapping from UI inputs
|
| 534 |
+
params = {
|
| 535 |
+
"noise_std": float(noise_std),
|
| 536 |
+
"clahe_clip": float(clahe_clip),
|
| 537 |
+
"tile": int(tile),
|
| 538 |
+
"cutoff": float(cutoff),
|
| 539 |
+
"fstrength": float(fstrength),
|
| 540 |
+
"awb": bool(awb),
|
| 541 |
+
"sim_camera": bool(sim_camera),
|
| 542 |
+
"lut_file": lut_path,
|
| 543 |
+
"lut_strength": float(lut_strength),
|
| 544 |
+
"awb_ref": awb_ref,
|
| 545 |
+
"fft_ref": fft_ref,
|
| 546 |
+
"seed": int(seed) if (seed is not None and str(seed) != "") else None,
|
| 547 |
+
"jpeg_cycles": int(jpeg_cycles),
|
| 548 |
+
"jpeg_qmin": int(jpeg_qmin),
|
| 549 |
+
"jpeg_qmax": int(jpeg_qmax),
|
| 550 |
+
"vignette_strength": float(vignette_strength),
|
| 551 |
+
"chroma_strength": float(chroma_strength),
|
| 552 |
+
"iso_scale": float(iso_scale),
|
| 553 |
+
"read_noise": float(read_noise),
|
| 554 |
+
"no_no_bayer": bool(no_no_bayer),
|
| 555 |
+
"randomness": float(randomness),
|
| 556 |
+
"perturb": float(perturb),
|
| 557 |
+
"phase_perturb": float(phase_perturb),
|
| 558 |
+
"radial_smooth": int(radial_smooth),
|
| 559 |
+
"fft_mode": fft_mode,
|
| 560 |
+
"fft_alpha": float(fft_alpha),
|
| 561 |
+
}
|
| 562 |
+
|
| 563 |
+
# Overlay preset overrides (builtin or custom)
|
| 564 |
+
overrides = get_preset_overrides(preset)
|
| 565 |
+
for k, v in overrides.items():
|
| 566 |
+
params[k] = v
|
| 567 |
+
|
| 568 |
+
# Call the pipeline with explicit params
|
| 569 |
+
try:
|
| 570 |
+
result, msg, exif = run_process_with_exif(
|
| 571 |
+
inp_img,
|
| 572 |
+
noise_std=params.get("noise_std"),
|
| 573 |
+
clahe_clip=params.get("clahe_clip"),
|
| 574 |
+
tile=params.get("tile"),
|
| 575 |
+
cutoff=params.get("cutoff"),
|
| 576 |
+
fstrength=params.get("fstrength"),
|
| 577 |
+
awb=params.get("awb"),
|
| 578 |
+
sim_camera=params.get("sim_camera"),
|
| 579 |
+
lut_file=params.get("lut_file"),
|
| 580 |
+
lut_strength=params.get("lut_strength"),
|
| 581 |
+
awb_ref=params.get("awb_ref"),
|
| 582 |
+
fft_ref=params.get("fft_ref"),
|
| 583 |
+
seed=params.get("seed"),
|
| 584 |
+
jpeg_cycles=params.get("jpeg_cycles"),
|
| 585 |
+
jpeg_qmin=params.get("jpeg_qmin"),
|
| 586 |
+
jpeg_qmax=params.get("jpeg_qmax"),
|
| 587 |
+
vignette_strength=params.get("vignette_strength"),
|
| 588 |
+
chroma_strength=params.get("chroma_strength"),
|
| 589 |
+
iso_scale=params.get("iso_scale"),
|
| 590 |
+
read_noise=params.get("read_noise"),
|
| 591 |
+
no_no_bayer=params.get("no_no_bayer"),
|
| 592 |
+
randomness=params.get("randomness"),
|
| 593 |
+
perturb=params.get("perturb"),
|
| 594 |
+
phase_perturb=params.get("phase_perturb"),
|
| 595 |
+
radial_smooth=params.get("radial_smooth"),
|
| 596 |
+
fft_mode=params.get("fft_mode"),
|
| 597 |
+
fft_alpha=params.get("fft_alpha"),
|
| 598 |
+
)
|
| 599 |
+
except Exception as e:
|
| 600 |
+
return None, None, None, None, None, "", f"Processing error: {e}"
|
| 601 |
+
|
| 602 |
+
if result is None:
|
| 603 |
+
return None, None, None, None, None, "", msg
|
| 604 |
+
|
| 605 |
+
try:
|
| 606 |
+
hist_img, fft_img, radial_img = make_analysis_images(result)
|
| 607 |
+
except Exception as e:
|
| 608 |
+
return result, None, None, None, None, exif, f"Analysis error: {e}"
|
| 609 |
+
|
| 610 |
+
# Delta preview
|
| 611 |
+
try:
|
| 612 |
+
diff_img, mse_val, metrics = make_delta_image(inp_img, result)
|
| 613 |
+
except Exception as e:
|
| 614 |
+
diff_img, mse_val, metrics = None, 0.0, f"delta error: {e}"
|
| 615 |
+
|
| 616 |
+
return result, hist_img, fft_img, radial_img, diff_img, metrics, exif, msg
|
| 617 |
+
|
| 618 |
+
btn = gr.Button("Run")
|
| 619 |
+
btn.click(
|
| 620 |
+
_wrap,
|
| 621 |
+
inputs=[preset, inp, noise_std, clahe_clip, tile, cutoff, fstrength, awb, sim_camera, lut_file, lut_strength, awb_ref, fft_ref, seed, jpeg_cycles, jpeg_qmin, vignette_strength, chroma_strength, iso_scale, read_noise, no_no_bayer, randomness, perturb, phase_perturb, radial_smooth, fft_mode, fft_alpha],
|
| 622 |
+
outputs=[out, hist_out, fft_out, radial_out, delta_out, delta_metrics, exif_out, status],
|
| 623 |
+
)
|
| 624 |
+
|
| 625 |
+
def _save_preset(name, preset, noise_std, clahe_clip, tile, cutoff, fstrength, awb, sim_camera, lut_strength, seed, jpeg_cycles, jpeg_qmin, vignette_strength, chroma_strength, iso_scale, read_noise, no_no_bayer, randomness, perturb, phase_perturb, radial_smooth, fft_mode, fft_alpha):
|
| 626 |
+
if not name:
|
| 627 |
+
return "Provide a name to save the preset"
|
| 628 |
+
data = {
|
| 629 |
+
"noise_std": float(noise_std),
|
| 630 |
+
"clahe_clip": float(clahe_clip),
|
| 631 |
+
"tile": int(tile),
|
| 632 |
+
"cutoff": float(cutoff),
|
| 633 |
+
"fstrength": float(fstrength),
|
| 634 |
+
"randomness": float(randomness),
|
| 635 |
+
"perturb": float(perturb),
|
| 636 |
+
"phase_perturb": float(phase_perturb),
|
| 637 |
+
"radial_smooth": int(radial_smooth),
|
| 638 |
+
"jpeg_cycles": int(jpeg_cycles),
|
| 639 |
+
"jpeg_qmin": int(jpeg_qmin),
|
| 640 |
+
"vignette_strength": float(vignette_strength),
|
| 641 |
+
"chroma_strength": float(chroma_strength),
|
| 642 |
+
"iso_scale": float(iso_scale),
|
| 643 |
+
"read_noise": float(read_noise),
|
| 644 |
+
"no_no_bayer": bool(no_no_bayer),
|
| 645 |
+
}
|
| 646 |
+
save_custom_preset(name, data)
|
| 647 |
+
return f"Saved preset: {name}"
|
| 648 |
+
|
| 649 |
+
save_preset_btn.click(_save_preset, inputs=[preset_name, preset, noise_std, clahe_clip, tile, cutoff, fstrength, awb, sim_camera, lut_strength, seed, jpeg_cycles, jpeg_qmin, vignette_strength, chroma_strength, iso_scale, read_noise, no_no_bayer, randomness, perturb, phase_perturb, radial_smooth, fft_mode, fft_alpha], outputs=[preset_summary_box])
|
| 650 |
+
|
| 651 |
+
def _update_summary(selected):
|
| 652 |
+
return preset_summary(selected)
|
| 653 |
+
|
| 654 |
+
preset.change(_update_summary, inputs=[preset], outputs=[preset_summary_box])
|
| 655 |
+
|
| 656 |
+
return demo
|
| 657 |
+
|
| 658 |
+
|
| 659 |
+
if __name__ == "__main__":
|
| 660 |
+
iface = build_interface()
|
| 661 |
+
iface.launch(server_name="0.0.0.0", server_port=7860)
|
image_postprocess/camera_pipeline.py
CHANGED
|
@@ -217,7 +217,9 @@ def simulate_camera_pipeline(img_arr: np.ndarray,
|
|
| 217 |
# 1) Bayer mosaic + demosaic (if enabled)
|
| 218 |
if bayer:
|
| 219 |
try:
|
| 220 |
-
|
|
|
|
|
|
|
| 221 |
if _HAS_CV2:
|
| 222 |
# cv2 expects a single-channel Bayer and provides demosaicing codes
|
| 223 |
# We'll use RGGB code (COLOR_BAYER_RG2BGR) so convert back to RGB after
|
|
|
|
| 217 |
# 1) Bayer mosaic + demosaic (if enabled)
|
| 218 |
if bayer:
|
| 219 |
try:
|
| 220 |
+
# Build mosaic from the RGB image (no channel reversal). Previously the code
|
| 221 |
+
# reversed channels here which caused R/B swapping and strong green tint.
|
| 222 |
+
mosaic = _bayer_mosaic(out)
|
| 223 |
if _HAS_CV2:
|
| 224 |
# cv2 expects a single-channel Bayer and provides demosaicing codes
|
| 225 |
# We'll use RGGB code (COLOR_BAYER_RG2BGR) so convert back to RGB after
|
requirements.txt
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
|
| 2 |
pillow
|
| 3 |
numpy
|
| 4 |
matplotlib
|
|
|
|
| 1 |
+
gradio
|
| 2 |
pillow
|
| 3 |
numpy
|
| 4 |
matplotlib
|
test_isolate_stages.py
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from PIL import Image
|
| 2 |
+
import numpy as np
|
| 3 |
+
from app_gradio import run_process_with_exif
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def mse(a, b):
|
| 7 |
+
a = np.array(a).astype(np.float32)
|
| 8 |
+
b = np.array(b).astype(np.float32)
|
| 9 |
+
return float(((a - b) ** 2).mean())
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def make_input():
|
| 13 |
+
img = Image.new('RGB', (256, 256))
|
| 14 |
+
for y in range(256):
|
| 15 |
+
for x in range(256):
|
| 16 |
+
img.putpixel((x, y), (x % 256, y % 256, (x + y) % 256))
|
| 17 |
+
return img
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def run_variant(name, **kwargs):
|
| 21 |
+
inp = make_input()
|
| 22 |
+
out, status, exif = run_process_with_exif(inp, **kwargs)
|
| 23 |
+
import os
|
| 24 |
+
os.makedirs('test', exist_ok=True)
|
| 25 |
+
path = os.path.join('test', f"test_out_{name}.jpg")
|
| 26 |
+
if out is not None:
|
| 27 |
+
out.save(path)
|
| 28 |
+
print(f"{name}: status={status}, exif_len={len(exif) if exif else 0}, mse={mse(inp, out) if out is not None else 'NA'}, saved={path if out is not None else 'no'}")
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
if __name__ == '__main__':
|
| 32 |
+
# Default
|
| 33 |
+
run_variant('default', noise_std=0.02, clahe_clip=2.0, tile=8, cutoff=0.25, fstrength=0.9, awb=True, sim_camera=True, seed=0)
|
| 34 |
+
# AWB disabled
|
| 35 |
+
run_variant('no_awb', noise_std=0.02, clahe_clip=2.0, tile=8, cutoff=0.25, fstrength=0.9, awb=False, sim_camera=True, seed=0)
|
| 36 |
+
# camera sim disabled
|
| 37 |
+
run_variant('no_cam', noise_std=0.02, clahe_clip=2.0, tile=8, cutoff=0.25, fstrength=0.9, awb=True, sim_camera=False, seed=0)
|
| 38 |
+
# both disabled
|
| 39 |
+
run_variant('no_awb_no_cam', noise_std=0.02, clahe_clip=2.0, tile=8, cutoff=0.25, fstrength=0.9, awb=False, sim_camera=False, seed=0)
|
test_smoke_gradio.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from PIL import Image
|
| 2 |
+
import io
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
# Import the run_process function from the Gradio wrapper
|
| 6 |
+
from app_gradio import run_process
|
| 7 |
+
|
| 8 |
+
# Create a small synthetic test image (RGB gradient)
|
| 9 |
+
img = Image.new('RGB', (128, 128))
|
| 10 |
+
for y in range(128):
|
| 11 |
+
for x in range(128):
|
| 12 |
+
img.putpixel((x, y), (int(x*2), int(y*2), int((x+y)/2)))
|
| 13 |
+
|
| 14 |
+
out_img, status = run_process(img)
|
| 15 |
+
print('Status:', status)
|
| 16 |
+
if out_img is not None:
|
| 17 |
+
out_path = '/tmp/test_gradio_output.jpg'
|
| 18 |
+
out_img.save(out_path)
|
| 19 |
+
print('Wrote output to', out_path)
|
| 20 |
+
else:
|
| 21 |
+
print('No output image generated')
|
test_smoke_gradio_debug.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from PIL import Image
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
# Import the richer runner (with EXIF) from the Gradio wrapper
|
| 5 |
+
from app_gradio import run_process_with_exif
|
| 6 |
+
|
| 7 |
+
# Create a small synthetic test image (RGB gradient)
|
| 8 |
+
img = Image.new('RGB', (128, 128))
|
| 9 |
+
for y in range(128):
|
| 10 |
+
for x in range(128):
|
| 11 |
+
img.putpixel((x, y), (int(x*2), int(y*2), int((x+y)/2)))
|
| 12 |
+
|
| 13 |
+
# Call with explicit parameters to exercise many code paths
|
| 14 |
+
out_img, status, exif = run_process_with_exif(
|
| 15 |
+
img,
|
| 16 |
+
noise_std=0.02,
|
| 17 |
+
clahe_clip=2.0,
|
| 18 |
+
tile=8,
|
| 19 |
+
cutoff=0.25,
|
| 20 |
+
fstrength=0.9,
|
| 21 |
+
awb=True,
|
| 22 |
+
sim_camera=True,
|
| 23 |
+
lut_file=None,
|
| 24 |
+
lut_strength=0.1,
|
| 25 |
+
awb_ref=None,
|
| 26 |
+
fft_ref=None,
|
| 27 |
+
seed=0,
|
| 28 |
+
jpeg_cycles=1,
|
| 29 |
+
jpeg_qmin=88,
|
| 30 |
+
jpeg_qmax=96,
|
| 31 |
+
vignette_strength=0.35,
|
| 32 |
+
chroma_strength=1.2,
|
| 33 |
+
iso_scale=1.0,
|
| 34 |
+
read_noise=2.0,
|
| 35 |
+
no_no_bayer=False,
|
| 36 |
+
randomness=0.05,
|
| 37 |
+
perturb=0.008,
|
| 38 |
+
phase_perturb=0.08,
|
| 39 |
+
radial_smooth=5,
|
| 40 |
+
fft_mode="auto",
|
| 41 |
+
fft_alpha=1.0,
|
| 42 |
+
hot_pixel_prob=1e-6,
|
| 43 |
+
banding_strength=0.0,
|
| 44 |
+
motion_blur_kernel=1,
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
print('Status:', status)
|
| 48 |
+
print('EXIF (hex length):', len(exif) if exif else 0)
|
| 49 |
+
if out_img is not None:
|
| 50 |
+
os.makedirs('test', exist_ok=True)
|
| 51 |
+
out_path = os.path.join('test', 'test_gradio_output_debug.jpg')
|
| 52 |
+
out_img.save(out_path)
|
| 53 |
+
print('Wrote output to', out_path)
|
| 54 |
+
else:
|
| 55 |
+
print('No output image generated')
|