Spaces:
Configuration error
Configuration error
Upload companies.py
Browse files- apps/companies.py +322 -3
apps/companies.py
CHANGED
|
@@ -1,3 +1,322 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""
|
| 3 |
+
Created on Tue Apr 26 17:38:54 2022
|
| 4 |
+
|
| 5 |
+
@author: bullm
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import streamlit as st
|
| 9 |
+
from modules import tables
|
| 10 |
+
import pandas as pd
|
| 11 |
+
from streamlit_echarts import st_echarts
|
| 12 |
+
from Data.credentials import credentials_s3 as creds3
|
| 13 |
+
import boto3
|
| 14 |
+
import io
|
| 15 |
+
import pybase64 as base64
|
| 16 |
+
import matplotlib.pyplot as plt
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
@st.experimental_memo
|
| 20 |
+
def get_asset_field(id_quant, start, field='IQ_CLOSEPRICE_ADJ', expand=True,
|
| 21 |
+
rename=['asset']):
|
| 22 |
+
asset_obj = tables.EquityMaster(asset=id_quant, field=field)
|
| 23 |
+
asset_df = asset_obj.query(rename=rename, start=start, expand=expand)
|
| 24 |
+
return pd.DataFrame(asset_df)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
@st.experimental_memo
|
| 28 |
+
def get_macro_field(country, start, instrument="INDEX", expand=True,
|
| 29 |
+
rename=['country']):
|
| 30 |
+
asset_obj = tables.MacroMaster(country=country, instrument=instrument)
|
| 31 |
+
asset_df = asset_obj.query(rename=rename, start=start, expand=expand)
|
| 32 |
+
return pd.DataFrame(asset_df)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def plot_returns(id_quant, country, start):
|
| 36 |
+
asset_df = get_asset_field(id_quant, start)
|
| 37 |
+
index_df = get_macro_field(country, start)
|
| 38 |
+
asset_df = asset_df.merge(index_df, how='left',
|
| 39 |
+
left_index=True,
|
| 40 |
+
right_index=True)
|
| 41 |
+
x = asset_df.index
|
| 42 |
+
y2 = asset_df[id_quant]/asset_df.iloc[0][id_quant] - 1
|
| 43 |
+
y1= (1 + asset_df[country]).cumprod() - 1
|
| 44 |
+
plt.figure(figsize=(10, 5))
|
| 45 |
+
plt.rcParams['axes.facecolor'] = '#EAEAEA'
|
| 46 |
+
plt.rcParams['figure.facecolor'] = '#EAEAEA'
|
| 47 |
+
plt.fill_between(x, y1, y2, where=y2 >y1, facecolor='green', alpha=0.5)
|
| 48 |
+
plt.fill_between(x, y1, y2, where=y2 <=y1, facecolor='red', alpha=0.5)
|
| 49 |
+
plt.xticks(rotation=60)
|
| 50 |
+
plt.title('Asset vs Benchmark')
|
| 51 |
+
st.pyplot(plt, height='300')
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def get_ebitda(id_quant):
|
| 55 |
+
ebitda_df = get_asset_field(id_quant, '2021-01-01', field='IQ_EBITDA', expand=True,
|
| 56 |
+
rename=['asset'])
|
| 57 |
+
ebitda_actual = round(ebitda_df.iloc[-1][id_quant], 2)
|
| 58 |
+
ebitda_anterior = round(ebitda_df.iloc[-2][id_quant], 2)
|
| 59 |
+
delta = round(ebitda_actual - ebitda_anterior,2)
|
| 60 |
+
st.metric("Ebitda " + ebitda_df.index[-1].strftime("%Y-%m-%d"), ebitda_actual, delta)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
@st.experimental_memo
|
| 72 |
+
def get_asset_field(id_quant, field, start, expand=False, rename=['asset', 'field']):
|
| 73 |
+
asset_obj = tables.EquityMaster(asset=id_quant, field=field)
|
| 74 |
+
asset_df = asset_obj.query(rename=rename, start=start, expand=expand)
|
| 75 |
+
return pd.DataFrame(asset_df)
|
| 76 |
+
|
| 77 |
+
@st.experimental_memo
|
| 78 |
+
def get_macro_field(country, instrument, start, expand=True, rename=['country']):
|
| 79 |
+
asset_obj = tables.MacroMaster(country=country, instrument=instrument)
|
| 80 |
+
asset_df = asset_obj.query(rename=rename, start=start, expand=expand)
|
| 81 |
+
return pd.DataFrame(asset_df)
|
| 82 |
+
|
| 83 |
+
def get_dict_companies():
|
| 84 |
+
company_base_df = pd.read_excel("Data/Company_Base_Definitivo.xlsx",
|
| 85 |
+
sheet_name='Compilado')
|
| 86 |
+
company_id_dict = dict(zip(company_base_df["Ticker"], company_base_df["ID_Quant"]))
|
| 87 |
+
return company_id_dict
|
| 88 |
+
# asset = data_daily[field][id_quant]
|
| 89 |
+
|
| 90 |
+
def read_itub():
|
| 91 |
+
itub_df = pd.read_csv('C:/Users/bullm/Desktop/ITUB.csv')
|
| 92 |
+
itub_df.index = pd.to_datetime(itub_df["Date"])
|
| 93 |
+
itub_cs_s = itub_df["Adj Close"]
|
| 94 |
+
st.line_chart(itub_cs_s)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def company_info():
|
| 98 |
+
st.set_page_config(layout="wide", page_title="Portal LVAM",
|
| 99 |
+
page_icon="img/icono.png")
|
| 100 |
+
st.sidebar.write("Companies")
|
| 101 |
+
|
| 102 |
+
company_base_df = pd.read_excel("Data/Company_Base_Definitivo.xlsx",
|
| 103 |
+
sheet_name='Compilado')
|
| 104 |
+
col1, col2 = st.columns((1, 1.681))
|
| 105 |
+
companies_id_dict = get_dict_companies()
|
| 106 |
+
tickers = col2.multiselect("Seleccionasr Empresa",
|
| 107 |
+
company_base_df["Ticker"],
|
| 108 |
+
["ITUB4"])
|
| 109 |
+
country = col2.multiselect("Seleccionasr Empresa",
|
| 110 |
+
company_base_df["Portfolio_Country"].unique(),
|
| 111 |
+
["Brazil"])
|
| 112 |
+
id_quants= [str(companies_id_dict[ticker]) for ticker in tickers]
|
| 113 |
+
fields_ls= ["IQ_CLOSEPRICE_ADJ", "IQ_MARKETCAP"]
|
| 114 |
+
field = col1.selectbox("Selecione un campo", fields_ls)
|
| 115 |
+
start = '2020-01-01'
|
| 116 |
+
df = get_asset_field(id_quants, field, start, rename=['asset'])
|
| 117 |
+
df = df.ffill(axis=0)
|
| 118 |
+
tickers = list(tickers)
|
| 119 |
+
company_id_dict = dict(zip(company_base_df["Ticker"], company_base_df["ID_Quant"]))
|
| 120 |
+
id_company_dict = dict(zip(company_base_df["ID_Quant"], company_base_df["Ticker"]))
|
| 121 |
+
df.columns = [id_company_dict[int(col)] for col in df.columns]
|
| 122 |
+
st.title('Cierre Ajustado Mongo Quant')
|
| 123 |
+
col1, col2, col3 = st.columns(3)
|
| 124 |
+
mm2 = col2.checkbox("Indice Pais")
|
| 125 |
+
mm3 = col3.checkbox("Indice Sector")
|
| 126 |
+
if len(tickers) == 1:
|
| 127 |
+
mm = col1.checkbox("Medias moviles")
|
| 128 |
+
rollings = [20,60,240]
|
| 129 |
+
dicc_mm = {
|
| 130 |
+
tickers[0] + f' {x}':df[tickers[0]].rolling(x).mean() for x in rollings
|
| 131 |
+
}
|
| 132 |
+
df2 =pd.concat(dicc_mm.values(), keys=dicc_mm.keys(), axis=1)
|
| 133 |
+
df = pd.concat([df, df2], axis=1)
|
| 134 |
+
if mm2:
|
| 135 |
+
mc_df = (1+get_macro_field(country, "INDEX", start)).cumprod()
|
| 136 |
+
df = pd.concat([df, mc_df], axis=1).ffill(axis=0)
|
| 137 |
+
df = df.iloc[len(df) - 252: ]
|
| 138 |
+
|
| 139 |
+
else:
|
| 140 |
+
df = df.iloc[len(df) - 252: ]
|
| 141 |
+
if not mm and not mm2:
|
| 142 |
+
st.write(df)
|
| 143 |
+
st.line_chart(df[df.columns[0]])
|
| 144 |
+
elif not mm and mm2:
|
| 145 |
+
df = df[[df.columns[0],df.columns[-1]]]/df.iloc[0][[df.columns[0],df.columns[-1]]]
|
| 146 |
+
st.write(df)
|
| 147 |
+
st.line_chart(df)
|
| 148 |
+
else:
|
| 149 |
+
st.write(df)
|
| 150 |
+
st.line_chart(df)
|
| 151 |
+
if len(tickers) > 1:
|
| 152 |
+
if mm2:
|
| 153 |
+
mc_df = (1+get_macro_field(country, "INDEX", start)).cumprod()
|
| 154 |
+
df = pd.concat([df, mc_df], axis=1).ffill(axis=0)
|
| 155 |
+
if mm3:
|
| 156 |
+
mc_df = (1+get_macro_field(country, "Banks_INDEX", start)).cumprod()
|
| 157 |
+
df = pd.concat([df, mc_df], axis=1).ffill(axis=0)
|
| 158 |
+
df = df.iloc[len(df)-252:]
|
| 159 |
+
# st.write(df.iloc[0])
|
| 160 |
+
# st.write(df.iloc[-1])
|
| 161 |
+
|
| 162 |
+
st.line_chart(df/df.iloc[0]) #/df.iloc[0]-1)
|
| 163 |
+
|
| 164 |
+
import json
|
| 165 |
+
|
| 166 |
+
def save_index(list_assets, titulo):
|
| 167 |
+
with open('Data/index.json', 'r') as json_file:
|
| 168 |
+
json_object = json.load(json_file)
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
json_object[titulo] = list_assets
|
| 172 |
+
with open('Data/index.json', 'w') as outfile:
|
| 173 |
+
json.dump(json_object, outfile)
|
| 174 |
+
outfile.close()
|
| 175 |
+
|
| 176 |
+
@st.experimental_memo
|
| 177 |
+
def read_scoring():
|
| 178 |
+
key = creds3["S3_KEY_ID"]
|
| 179 |
+
secret_key = creds3["S3_SECRET_KEY"]
|
| 180 |
+
bucket = creds3["S3_BUCKET"]
|
| 181 |
+
path ="scoring.xlsx"
|
| 182 |
+
scoring = read_excel_s3(key, secret_key, bucket, path)
|
| 183 |
+
return scoring
|
| 184 |
+
|
| 185 |
+
def read_excel_s3(key, secret_key, bucket, path):
|
| 186 |
+
s3_client = boto3.client('s3', aws_access_key_id = key, aws_secret_access_key= secret_key)
|
| 187 |
+
response = s3_client.get_object(Bucket=bucket, Key=path)
|
| 188 |
+
data = response["Body"].read()
|
| 189 |
+
df = pd.read_excel(io.BytesIO(data), engine='openpyxl')
|
| 190 |
+
return df
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
def get_table_excel_link(df, name):
|
| 194 |
+
towrite = io.BytesIO()
|
| 195 |
+
writer = pd.ExcelWriter(towrite, engine='xlsxwriter')
|
| 196 |
+
downloaded_file = df.to_excel(writer, encoding='utf-8', index=True,
|
| 197 |
+
header=True)
|
| 198 |
+
workbook = writer.book
|
| 199 |
+
worksheet = writer.sheets["Sheet1"]
|
| 200 |
+
#set the column width as per your requirement
|
| 201 |
+
worksheet.set_column('A:BZ', 18)
|
| 202 |
+
writer.save()
|
| 203 |
+
towrite.seek(0) # reset pointer
|
| 204 |
+
file_name = name+'.xlsx'
|
| 205 |
+
style = 'style="color:black;text-decoration: none; font-size:18px;" '
|
| 206 |
+
name_mark = name
|
| 207 |
+
b64 = base64.b64encode(towrite.read()).decode() # some strings
|
| 208 |
+
linko = f'<center><a href="data:application/vnd.openxmlformats-officedocument.spreadsheetml.sheet;base64,{b64}" '+style+'download="'+file_name+'"><button>'+name_mark+'</button></a></center>'
|
| 209 |
+
return linko
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
def index_constructor():
|
| 217 |
+
try:
|
| 218 |
+
company_base_df = pd.read_excel("Data/Company_Base_Definitivo.xlsx",
|
| 219 |
+
sheet_name='Compilado')
|
| 220 |
+
scoring = read_scoring()[["Ticker", "Large/Small", "Market_Cap", "ADTV"]]
|
| 221 |
+
company_base_df = company_base_df.merge(scoring, how='left', on='Ticker')
|
| 222 |
+
col1, col2, col3, col4 = st.columns(4)
|
| 223 |
+
country = col1.selectbox("Country",["All", "Chile", "Brazil", "Mexico", "Peru", "Colombia"])
|
| 224 |
+
large_small = col2.selectbox("Large/Small", ["All", "Large", "Small"])
|
| 225 |
+
start = col3.text_input('Date', '2022-01')
|
| 226 |
+
field1 = col4.selectbox("Field", ['IQ_CLOSEPRICE_ADJ', 'IQ_PBV'])
|
| 227 |
+
if col1.checkbox("Filtro por Mkt Cap"):
|
| 228 |
+
mkt_cap = col2.number_input("Mkt Cap Min", value=1000)
|
| 229 |
+
company_base_df = company_base_df[company_base_df["Market_Cap"]>mkt_cap]
|
| 230 |
+
if col3.checkbox("Filtro por ADTV"):
|
| 231 |
+
adtv = col4.number_input("ADTV Min", value=1)
|
| 232 |
+
company_base_df = company_base_df[company_base_df["ADTV"]>adtv]
|
| 233 |
+
if country != "All":
|
| 234 |
+
company_base_df = company_base_df[company_base_df["Portfolio_Country"]==country]
|
| 235 |
+
if large_small != "All":
|
| 236 |
+
company_base_df = company_base_df[company_base_df["Large/Small"]==large_small]
|
| 237 |
+
if st.checkbox("Seleccionar todos"):
|
| 238 |
+
tickers = st.multiselect("Seleccionar Empresa",
|
| 239 |
+
company_base_df["Ticker"],
|
| 240 |
+
company_base_df["Ticker"])
|
| 241 |
+
else:
|
| 242 |
+
tickers = st.multiselect("Seleccionasr Empresa2",
|
| 243 |
+
company_base_df["Ticker"],)
|
| 244 |
+
if len(tickers)> 0:
|
| 245 |
+
titulo = col1.text_input("Titulo")
|
| 246 |
+
save_index = col2.button("Save Index")
|
| 247 |
+
if save_index:
|
| 248 |
+
save_index(tickers, titulo)
|
| 249 |
+
companies_id_dict = dict(zip(company_base_df["Ticker"],
|
| 250 |
+
company_base_df["ID_Quant"]))
|
| 251 |
+
id_company_dict = dict(zip(company_base_df["ID_Quant"],
|
| 252 |
+
company_base_df["Ticker"]))
|
| 253 |
+
id_quants = [str(companies_id_dict[ticker]) for ticker in tickers]
|
| 254 |
+
|
| 255 |
+
field = get_asset_field(id_quants,
|
| 256 |
+
field1,
|
| 257 |
+
start,
|
| 258 |
+
expand=False,
|
| 259 |
+
rename=['asset'])
|
| 260 |
+
ccy = tables.MacroMaster(instrument='FX_USD',
|
| 261 |
+
currency='CLP').query(start=start)
|
| 262 |
+
if field1 == 'IQ_CLOSEPRICE_ADJ':
|
| 263 |
+
rets = field.pct_change() # field.mul(ccy, axis=0).pct_change()
|
| 264 |
+
else:
|
| 265 |
+
rets = field.ffill(0)
|
| 266 |
+
mkt_cap = get_asset_field(id_quants,
|
| 267 |
+
'IQ_MARKETCAP',
|
| 268 |
+
start,
|
| 269 |
+
expand=False,
|
| 270 |
+
rename=['asset']).ffill(0)
|
| 271 |
+
weights = mkt_cap.div(mkt_cap.sum(axis=1), axis=0).shift(1)
|
| 272 |
+
|
| 273 |
+
if field1 == 'IQ_CLOSEPRICE_ADJ':
|
| 274 |
+
st.line_chart((1 +(rets * weights).sum(axis=1)).cumprod()-1)
|
| 275 |
+
bm = (1 +(rets * weights).sum(axis=1)).cumprod()-1
|
| 276 |
+
else:
|
| 277 |
+
st.line_chart((rets * weights).sum(axis=1))
|
| 278 |
+
bm =(rets * weights).sum(axis=1)
|
| 279 |
+
company_id_dict = dict(zip(company_base_df["Ticker"],
|
| 280 |
+
company_base_df["ID_Quant"]))
|
| 281 |
+
id_company_dict = dict(zip(company_base_df["ID_Quant"],
|
| 282 |
+
company_base_df["Ticker CIQ"]))
|
| 283 |
+
weights.columns = [id_company_dict[int(col)] for col in weights.columns]
|
| 284 |
+
rets.columns = [id_company_dict[int(col)] for col in rets.columns]
|
| 285 |
+
index = (1+get_macro_field('Chile', "INDEX", start)).cumprod()
|
| 286 |
+
col1, col2, col3, col4 = st.columns(4)
|
| 287 |
+
col1.markdown(get_table_excel_link(index, "Index"),
|
| 288 |
+
unsafe_allow_html=True)
|
| 289 |
+
col2.markdown(get_table_excel_link(weights, "Weights"),
|
| 290 |
+
unsafe_allow_html=True)
|
| 291 |
+
col3.markdown(get_table_excel_link(rets, "Retornos"),
|
| 292 |
+
unsafe_allow_html=True)
|
| 293 |
+
col4.markdown(get_table_excel_link(bm, "bm"), unsafe_allow_html=True)
|
| 294 |
+
|
| 295 |
+
except Exception as exc:
|
| 296 |
+
st.write(exc)
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
def pca(rets):
|
| 300 |
+
from sklearn.decomposition import PCA
|
| 301 |
+
import numpy as np
|
| 302 |
+
st.header('PCA')
|
| 303 |
+
pca = PCA(n_components=10)
|
| 304 |
+
rets_arr = np.array(rets.fillna(0))
|
| 305 |
+
rets_df = pd.DataFrame(rets_arr, columns = rets.columns, index= rets.index)
|
| 306 |
+
st.subheader('Retornos')
|
| 307 |
+
st.write(rets_df)
|
| 308 |
+
retorno_factores_arr = pca.fit_transform(rets_arr)
|
| 309 |
+
weights = pd.DataFrame(pca.components_, columns = rets.columns)
|
| 310 |
+
st.subheader('Weights')
|
| 311 |
+
st.write(weights)
|
| 312 |
+
ret_factor_fin = pd.DataFrame(retorno_factores_arr, index= rets.index)
|
| 313 |
+
st.subheader('Retornos Factores')
|
| 314 |
+
st.write(ret_factor_fin)
|
| 315 |
+
col1, col2 = st.columns(2)
|
| 316 |
+
st.write(pca.explained_variance_ratio_)
|
| 317 |
+
st.write(pca.explained_variance_ratio_.cumsum())
|
| 318 |
+
|
| 319 |
+
col1.markdown(get_table_excel_link(weights, "Weights"),
|
| 320 |
+
unsafe_allow_html=True)
|
| 321 |
+
col2.markdown(get_table_excel_link(ret_factor_fin, "Retornos PCA"),
|
| 322 |
+
unsafe_allow_html=True)
|