Spaces:
Configuration error
Configuration error
Upload Covid19.py
Browse files- apps/Covid19.py +369 -3
apps/Covid19.py
CHANGED
|
@@ -1,3 +1,369 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from plotly import graph_objs as go
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from pandas.core.groupby.groupby import DataError
|
| 5 |
+
from pytrends.request import TrendReq
|
| 6 |
+
from datetime import datetime, timedelta, date
|
| 7 |
+
import numpy as np
|
| 8 |
+
from plotly.subplots import make_subplots
|
| 9 |
+
from metodos import colores_corporativos
|
| 10 |
+
import pybase64 as base64
|
| 11 |
+
import io
|
| 12 |
+
from logs_portal import log
|
| 13 |
+
from Scheduler import Scheduler_Covid as sc
|
| 14 |
+
import os
|
| 15 |
+
|
| 16 |
+
def button_style():
|
| 17 |
+
style_button = """
|
| 18 |
+
<style>
|
| 19 |
+
button {
|
| 20 |
+
margin-top:-100px;
|
| 21 |
+
display: inline-block;
|
| 22 |
+
background-color: #e8e8e8;
|
| 23 |
+
border-radius: 15px;
|
| 24 |
+
border: 4px #cccccc;
|
| 25 |
+
color: #4a4a4a;
|
| 26 |
+
text-align: center;
|
| 27 |
+
font-size: 15px;
|
| 28 |
+
padding: 2px;
|
| 29 |
+
width: 260px;
|
| 30 |
+
transition: all 0.5s;
|
| 31 |
+
cursor: pointer;
|
| 32 |
+
margin: 5px;
|
| 33 |
+
}
|
| 34 |
+
button span {
|
| 35 |
+
cursor: pointer;
|
| 36 |
+
display: inline-block;
|
| 37 |
+
position: relative;
|
| 38 |
+
transition: 0.5s;
|
| 39 |
+
}
|
| 40 |
+
button span:after {
|
| 41 |
+
content: '\00bb';
|
| 42 |
+
position: absolute;
|
| 43 |
+
opacity: 0;
|
| 44 |
+
top: 0;
|
| 45 |
+
right: -20px;
|
| 46 |
+
transition: 0.5s;
|
| 47 |
+
}
|
| 48 |
+
button:hover {
|
| 49 |
+
background-color: #bb1114;
|
| 50 |
+
color:#e8e8e8;
|
| 51 |
+
}
|
| 52 |
+
button:hover span {
|
| 53 |
+
padding-right: 25px;
|
| 54 |
+
}
|
| 55 |
+
button:hover span:after {
|
| 56 |
+
opacity: 1;
|
| 57 |
+
right: 0;
|
| 58 |
+
}
|
| 59 |
+
</style>
|
| 60 |
+
"""
|
| 61 |
+
st.markdown(style_button, unsafe_allow_html=True)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def get_table_download_link(df):
|
| 65 |
+
"""Generates a link allowing the data in a given panda dataframe to be
|
| 66 |
+
downloaded
|
| 67 |
+
in: dataframe
|
| 68 |
+
out: href string
|
| 69 |
+
"""
|
| 70 |
+
csv = df.to_csv(index=False)
|
| 71 |
+
b64 = base64.b64encode(csv.encode()).decode()
|
| 72 |
+
name_arch = "Scoring_filtrado.csv"
|
| 73 |
+
name_mark = "Descargar .csv "
|
| 74 |
+
style = '"color:black;text-decoration: none;font-size:18px;"'
|
| 75 |
+
href = f'<center><a href="data:file/csv;base64,{b64}" style=' + style+' download="'+name_arch+'" ><button>'+name_mark+'</button></a></center>'
|
| 76 |
+
return href
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def get_table_excel_link(df, name_arch):
|
| 80 |
+
towrite = io.BytesIO()
|
| 81 |
+
downloaded_file = df.to_excel(towrite, encoding='utf-8', index=False,
|
| 82 |
+
header=True)
|
| 83 |
+
towrite.seek(0) # reset pointer
|
| 84 |
+
file_name = name_arch
|
| 85 |
+
style = 'style="color:black;text-decoration: none; font-size:18px;" '
|
| 86 |
+
name_mark = "Descargar "+name_arch
|
| 87 |
+
b64 = base64.b64encode(towrite.read()).decode() # some strings
|
| 88 |
+
linko= f'<center><a href="data:application/vnd.openxmlformats-officedocument.spreadsheetml.sheet;base64,{b64}" '+style+'download="'+file_name+'"><button>'+name_mark+'</button></a></center>'
|
| 89 |
+
return linko
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
@st.cache(show_spinner=True)
|
| 93 |
+
def charged_data():
|
| 94 |
+
regiones = {}
|
| 95 |
+
regiones['Latam'] = ['Argentina', 'Brazil', 'Chile', 'Colombia',
|
| 96 |
+
'Mexico', 'Peru']
|
| 97 |
+
regiones['Europa'] = ['Italy', 'Spain', 'Germany', 'United Kingdom',
|
| 98 |
+
'France']
|
| 99 |
+
regiones['Asia Emergente'] = ['South Korea', 'Taiwan', 'Hong Kong',
|
| 100 |
+
'India', 'Thailand', 'Indonesia']
|
| 101 |
+
regiones['USA'] = ['United States']
|
| 102 |
+
data_dict = np.load('Scheduler/dict_movilidad.npy',
|
| 103 |
+
allow_pickle='TRUE').item()
|
| 104 |
+
return data_dict, regiones
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
@st.cache(show_spinner=True)
|
| 108 |
+
def charged_data2():
|
| 109 |
+
covid_data = pd.read_csv('https://covid.ourworldindata.org/data/owid-covid-data.csv')
|
| 110 |
+
paises = {'CL': 'Chile', 'AR': 'Argentina', 'BR': 'Brazil',
|
| 111 |
+
'MX': 'Mexico'}
|
| 112 |
+
covid_data = covid_data.loc[covid_data['location'].isin(paises.values())]
|
| 113 |
+
covid_data['date'] = pd.to_datetime(covid_data['date'])
|
| 114 |
+
covid_data.set_index(['date', 'location'], inplace=True)
|
| 115 |
+
# Creamos diccionario con cada una de las variables para distintos pa铆ses
|
| 116 |
+
data_dict = {}
|
| 117 |
+
for col in covid_data.columns:
|
| 118 |
+
try:
|
| 119 |
+
data_dict[col] = covid_data[col].unstack().fillna(0).rolling(1).mean()
|
| 120 |
+
except DataError:
|
| 121 |
+
pass
|
| 122 |
+
# Descargamos la data de google trends
|
| 123 |
+
pytrends = TrendReq(retries=5, backoff_factor=0.2,
|
| 124 |
+
requests_args={'verify': False})
|
| 125 |
+
start = (datetime.today() - timedelta(180)).strftime("%Y-%m-%d")
|
| 126 |
+
start = datetime(2020, 2, 1).strftime("%Y-%m-%d")
|
| 127 |
+
end = datetime.today().strftime("%Y-%m-%d")
|
| 128 |
+
tf = f'{start} {end}'
|
| 129 |
+
kw_lists = {
|
| 130 |
+
'CL': ['PCR', 'sintomas covid', 'examen covid',
|
| 131 |
+
'covid positivo'],
|
| 132 |
+
'AR': ['PCR', 'olfato', 'sintomas covid', 'perdida gusto',
|
| 133 |
+
'covid positivo'],
|
| 134 |
+
'MX': ['PCR', 'olfato', 'sintomas covid', 'covid positivo',
|
| 135 |
+
'perdida gusto'],
|
| 136 |
+
'BR': ['PCR', 'sintomas covid', 'exame covid', 'covid positivo']
|
| 137 |
+
}
|
| 138 |
+
gt_data = {}
|
| 139 |
+
for p, kw in kw_lists.items():
|
| 140 |
+
pytrends.build_payload(kw, timeframe=tf, geo=p)
|
| 141 |
+
df = pytrends.interest_over_time().drop(columns='isPartial')
|
| 142 |
+
gt_data[paises[p]] = df.div(df.mean(0).values)
|
| 143 |
+
data_dict['GT Index'] = pd.DataFrame({p: gt_data[p].mean(1).rolling(1).mean()
|
| 144 |
+
for p in gt_data.keys()})
|
| 145 |
+
return data_dict, paises
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
@log
|
| 149 |
+
def Movilidad():
|
| 150 |
+
largo = 400
|
| 151 |
+
ancho = 550
|
| 152 |
+
button_style()
|
| 153 |
+
placebar = st.empty()
|
| 154 |
+
percent_complete = 0
|
| 155 |
+
my_bar = placebar.progress(percent_complete)
|
| 156 |
+
data_cargada = charged_data()
|
| 157 |
+
data_dict = data_cargada[0]
|
| 158 |
+
regiones = data_cargada[1]
|
| 159 |
+
europa = data_dict['Mobility Index'][regiones.keys()]["Europa"]
|
| 160 |
+
latam = data_dict['Mobility Index'][regiones.keys()]["Latam"]
|
| 161 |
+
asia = data_dict['Mobility Index'][regiones.keys()]["Asia Emergente"]
|
| 162 |
+
USA = data_dict['Mobility Index'][regiones.keys()]["USA"]
|
| 163 |
+
mov_region = data_dict['Mobility Index'][regiones.keys()][["USA", "Europa","Asia Emergente", "Latam"]]
|
| 164 |
+
percent_complete = percent_complete+33
|
| 165 |
+
placebar.progress(percent_complete)
|
| 166 |
+
colores = list(colores_corporativos().values())
|
| 167 |
+
colores2 = []
|
| 168 |
+
for i in range(len(colores)):
|
| 169 |
+
colores2.append("rgb"+str(colores[i]))
|
| 170 |
+
def plot_raw_data():
|
| 171 |
+
fig = go.Figure()
|
| 172 |
+
europa_ = go.Scatter(x=europa.index, y=europa.values, name="Europa",
|
| 173 |
+
line=dict(color=colores2[0]))
|
| 174 |
+
latam_ = go.Scatter(x=latam.index, y=latam.values, name="Latam",
|
| 175 |
+
line=dict(color=colores2[1]))
|
| 176 |
+
USA_ = go.Scatter(x=USA.index, y=USA.values, name="USA",
|
| 177 |
+
line=dict(color=colores2[2]))
|
| 178 |
+
asia_ = go.Scatter(x=asia.index, y=asia.values, name="Asia Emergente",
|
| 179 |
+
line=dict(color=colores2[3]))
|
| 180 |
+
fig.add_trace(europa_)
|
| 181 |
+
fig.add_trace(latam_)
|
| 182 |
+
fig.add_trace(USA_)
|
| 183 |
+
fig.add_trace(asia_)
|
| 184 |
+
fig.layout.update(title_text="Evoluci贸n por region",
|
| 185 |
+
xaxis_rangeslider_visible=True,
|
| 186 |
+
margin_b=20,
|
| 187 |
+
margin_r=20,
|
| 188 |
+
margin_l=20,
|
| 189 |
+
width=ancho,
|
| 190 |
+
height=largo,
|
| 191 |
+
legend=dict(orientation="h",
|
| 192 |
+
yanchor="bottom",
|
| 193 |
+
y=1.02,
|
| 194 |
+
xanchor="right",
|
| 195 |
+
x=1))
|
| 196 |
+
fig2 = go.Figure()
|
| 197 |
+
i = 0
|
| 198 |
+
for pais in regiones["Latam"]:
|
| 199 |
+
data_pais = data_dict['Mobility Index'][regiones['Latam']][pais]
|
| 200 |
+
pais_gr = go.Scatter(x=data_pais.index,
|
| 201 |
+
y=data_pais.values, name=pais,
|
| 202 |
+
line=dict(color=colores2[i]))
|
| 203 |
+
fig2.add_trace(pais_gr)
|
| 204 |
+
i = i+1
|
| 205 |
+
fig2.layout.update(title_text="Evoluci贸n LATAM",
|
| 206 |
+
xaxis_rangeslider_visible=True, margin_b=20,
|
| 207 |
+
margin_r=20,margin_l=20,
|
| 208 |
+
width=ancho, height=largo,
|
| 209 |
+
legend=dict(orientation="h",
|
| 210 |
+
yanchor="bottom",
|
| 211 |
+
y=1.0,
|
| 212 |
+
xanchor="right",
|
| 213 |
+
x=1))
|
| 214 |
+
col1, col2 = st.columns(2)
|
| 215 |
+
col1.plotly_chart(fig, use_container_width=True)
|
| 216 |
+
col2.plotly_chart(fig2, use_container_width=True)
|
| 217 |
+
link_excel_1 = get_table_excel_link(data_dict['Mobility Index'][regiones['Latam']], "Movilidad Latam.xlsx")
|
| 218 |
+
link_excel_2 = get_table_excel_link(mov_region, "Movilidad por region.xlsx")
|
| 219 |
+
col1.markdown(link_excel_1, unsafe_allow_html=True)
|
| 220 |
+
col2.markdown(link_excel_2, unsafe_allow_html=True)
|
| 221 |
+
percent_complete = percent_complete + 33
|
| 222 |
+
placebar.progress(percent_complete)
|
| 223 |
+
placebar.empty()
|
| 224 |
+
plot_raw_data()
|
| 225 |
+
percent_complete = percent_complete + 34
|
| 226 |
+
my_bar.progress(percent_complete)
|
| 227 |
+
my_bar.empty()
|
| 228 |
+
data_desag = pd.read_excel("Scheduler/Movilidad_desagrada.xlsx",
|
| 229 |
+
engine="openpyxl")
|
| 230 |
+
st.markdown(get_table_excel_link(data_desag, "Movilidad desagregada.xlsx"),
|
| 231 |
+
unsafe_allow_html=True)
|
| 232 |
+
try:
|
| 233 |
+
user = os.getlogin()
|
| 234 |
+
if user == 'bullm':
|
| 235 |
+
act = st.button('Actualizar')
|
| 236 |
+
if act:
|
| 237 |
+
sc.run_data_covid()
|
| 238 |
+
ud = pd.read_excel('Data/update_data.xlsx')
|
| 239 |
+
ud = ud[ud['View'] != 'Covid19']
|
| 240 |
+
today = date.today().strftime('%d-%m-%Y')
|
| 241 |
+
ud = ud.append({"View": "Covid19",
|
| 242 |
+
"Last_Update": today}, ignore_index=True)
|
| 243 |
+
ud.to_excel('Data/update_data.xlsx', index=False)
|
| 244 |
+
except Exception:
|
| 245 |
+
pass
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
@log
|
| 249 |
+
def Correlacion_GT():
|
| 250 |
+
largo = 400
|
| 251 |
+
ancho = 550
|
| 252 |
+
button_style()
|
| 253 |
+
# Cargamos la data relevante
|
| 254 |
+
percent_complete = 0
|
| 255 |
+
my_bar = st.progress(percent_complete)
|
| 256 |
+
percent_complete = percent_complete + 33
|
| 257 |
+
my_bar.progress(percent_complete)
|
| 258 |
+
data_cargada = charged_data2()
|
| 259 |
+
data_dict = data_cargada[0]
|
| 260 |
+
paises = data_cargada[1]
|
| 261 |
+
corr_df = pd.DataFrame(index=paises.values(), columns=np.arange(-3, 1))
|
| 262 |
+
percent_complete = percent_complete + 33
|
| 263 |
+
my_bar.progress(percent_complete)
|
| 264 |
+
i = 0
|
| 265 |
+
cols = st.columns(2)
|
| 266 |
+
col1, col2, col3, col4 = st.columns((1.5, 7, 2, 7))
|
| 267 |
+
for p in corr_df.index:
|
| 268 |
+
df = pd.concat([data_dict['GT Index'][p],
|
| 269 |
+
data_dict['new_cases_per_million'][p]],
|
| 270 |
+
axis=1).dropna()
|
| 271 |
+
df.columns = ['GT Index', 'Nuevos Casos Confirmados']
|
| 272 |
+
fig = make_subplots(specs=[[{"secondary_y": True}]])
|
| 273 |
+
CC = go.Scatter(x=df['GT Index'].index,
|
| 274 |
+
y=df['GT Index'].values, name='GT index',
|
| 275 |
+
line=dict(color='dimgrey'))
|
| 276 |
+
GT = go.Scatter(x=df['Nuevos Casos Confirmados'].index,
|
| 277 |
+
y=df['Nuevos Casos Confirmados'].values,
|
| 278 |
+
name='Casos confirmados', line=dict(color='darkred'))
|
| 279 |
+
fig.add_trace(CC, secondary_y=False,)
|
| 280 |
+
fig.add_trace(GT, secondary_y=True,)
|
| 281 |
+
fig.layout.update(title_text="Evoluci贸n {}".format(p),
|
| 282 |
+
xaxis_rangeslider_visible=True, margin_b=20,
|
| 283 |
+
margin_r=20, margin_l=20,
|
| 284 |
+
width=ancho, height=largo,
|
| 285 |
+
legend=dict(orientation="h",
|
| 286 |
+
yanchor="bottom",
|
| 287 |
+
y=1.02,
|
| 288 |
+
xanchor="right",
|
| 289 |
+
x=1))
|
| 290 |
+
link_excel = get_table_excel_link(df, "Correlacion GT.xlsx")
|
| 291 |
+
if i % 2 == 0:
|
| 292 |
+
cols[0].plotly_chart(fig, use_container_width=True)
|
| 293 |
+
cols[0].markdown(link_excel, unsafe_allow_html=True)
|
| 294 |
+
else:
|
| 295 |
+
cols[1].plotly_chart(fig, use_container_width=True)
|
| 296 |
+
cols[1].markdown(link_excel, unsafe_allow_html=True)
|
| 297 |
+
cols = st.columns(2)
|
| 298 |
+
col1, col2, col3, col4 = st.columns((1.5, 7, 2, 7))
|
| 299 |
+
i = i + 1
|
| 300 |
+
percent_complete = percent_complete + 34
|
| 301 |
+
my_bar.progress(percent_complete)
|
| 302 |
+
my_bar.empty()
|
| 303 |
+
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
@log
|
| 307 |
+
def vacunas():
|
| 308 |
+
largo = 400
|
| 309 |
+
ancho = 550
|
| 310 |
+
button_style()
|
| 311 |
+
vac_data = pd.read_csv('https://covid.ourworldindata.org/data/owid-covid-data.csv').set_index(['date','location'])
|
| 312 |
+
country_pop = (vac_data['population'].reset_index().set_index('location')
|
| 313 |
+
.drop(columns='date').squeeze().drop_duplicates())
|
| 314 |
+
min_pop = 1000000
|
| 315 |
+
idx = country_pop[country_pop > min_pop].index
|
| 316 |
+
vac_data = vac_data['total_vaccinations_per_hundred'].unstack().ffill().fillna(0)
|
| 317 |
+
vac_data.index = pd.to_datetime(vac_data.index)
|
| 318 |
+
N = 15
|
| 319 |
+
top_vac = vac_data[idx].iloc[-1].nlargest(N).sort_values()
|
| 320 |
+
regiones = {}
|
| 321 |
+
regiones['Latam'] = ['Argentina', 'Brazil', 'Chile', 'Colombia',
|
| 322 |
+
'Mexico', 'Peru']
|
| 323 |
+
regiones['Europa'] = ['Italy', 'Spain', 'Germany', 'United Kingdom',
|
| 324 |
+
'France', 'Russia']
|
| 325 |
+
regiones['Asia Emergente'] = ['South Korea', 'Taiwan', 'Hong Kong',
|
| 326 |
+
'China', 'Japan']
|
| 327 |
+
regiones['Norteam茅rica'] = ['United States', 'Canada']
|
| 328 |
+
inicio = datetime(2020, 11, 15)
|
| 329 |
+
vac_data = vac_data.loc[vac_data.index > inicio].resample('W').last()
|
| 330 |
+
vac_data.index.name = ''
|
| 331 |
+
colores = colores_corporativos().values()
|
| 332 |
+
colores = list(colores_corporativos().values())
|
| 333 |
+
colores2 = []
|
| 334 |
+
for i in range(len(colores)):
|
| 335 |
+
colores2.append("rgb"+str(colores[i]))
|
| 336 |
+
|
| 337 |
+
def plot_raw_data():
|
| 338 |
+
i = 0
|
| 339 |
+
cols = st.columns(2)
|
| 340 |
+
col1, col2, col3, col4 = st.columns((1.5, 7, 2, 7))
|
| 341 |
+
for region in list(regiones.keys()):
|
| 342 |
+
fig = go.Figure()
|
| 343 |
+
j = 0
|
| 344 |
+
for pais in regiones[region]:
|
| 345 |
+
data_pais = vac_data[regiones[region]][pais]
|
| 346 |
+
pais_gr = go.Scatter(x=data_pais.index,
|
| 347 |
+
y=data_pais.values, name=pais,
|
| 348 |
+
line=dict(color=colores2[j]))
|
| 349 |
+
fig.add_trace(pais_gr)
|
| 350 |
+
j = j+1
|
| 351 |
+
fig.layout.update(title_text="Evoluci贸n "+region,
|
| 352 |
+
xaxis_rangeslider_visible=True, height=largo,
|
| 353 |
+
width=ancho, margin_b=20,
|
| 354 |
+
legend=dict(orientation="h",
|
| 355 |
+
yanchor="bottom",
|
| 356 |
+
y=1.0,
|
| 357 |
+
xanchor="right",
|
| 358 |
+
x=1))
|
| 359 |
+
link_excel = get_table_excel_link(data_pais, "Vacunacion.xlsx")
|
| 360 |
+
if i % 2 == 0:
|
| 361 |
+
cols[0].plotly_chart(fig, use_column_width=True)
|
| 362 |
+
cols[0].markdown(link_excel, unsafe_allow_html=True)
|
| 363 |
+
else:
|
| 364 |
+
cols[1].plotly_chart(fig, use_column_width=True)
|
| 365 |
+
cols[1].markdown(link_excel, unsafe_allow_html=True)
|
| 366 |
+
cols = st.columns(2)
|
| 367 |
+
col1, col2, col3, col4 = st.columns((1.5, 7, 2, 7))
|
| 368 |
+
i = i+1
|
| 369 |
+
plot_raw_data()
|