Spaces:
Runtime error
Runtime error
| # Standard library imports | |
| import os | |
| import threading | |
| # Third-party imports | |
| import gradio as gr | |
| from peft import PeftModel | |
| from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer | |
| HF_TOKEN = os.getenv("HF_TOKEN") | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| "bunyaminergen/Qwen2.5-Coder-1.5B-Instruct-Reasoning", | |
| token=HF_TOKEN, | |
| trust_remote_code=True | |
| ) | |
| base_model = AutoModelForCausalLM.from_pretrained( | |
| "Qwen/Qwen2.5-Coder-1.5B-Instruct", | |
| device_map="auto", | |
| torch_dtype="auto", | |
| token=HF_TOKEN | |
| ) | |
| base_model.resize_token_embeddings(len(tokenizer)) | |
| model = PeftModel.from_pretrained( | |
| base_model, | |
| "bunyaminergen/Qwen2.5-Coder-1.5B-Instruct-Reasoning", | |
| token=HF_TOKEN | |
| ) | |
| model.eval() | |
| def respond( | |
| message: str, | |
| history: list[tuple[str, str]], | |
| system_message: str, | |
| max_tokens: int, | |
| temperature: float, | |
| top_p: float, | |
| ): | |
| messages = [{"role": "system", "content": system_message}] | |
| for u, a in history: | |
| if u: | |
| messages.append({"role": "user", "content": u}) | |
| if a: | |
| messages.append({"role": "assistant", "content": a}) | |
| messages.append({"role": "user", "content": message}) | |
| prompt = tokenizer.apply_chat_template( | |
| messages, tokenize=False, add_generation_prompt=True | |
| ) | |
| inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
| streamer = TextIteratorStreamer( | |
| tokenizer, | |
| timeout=600.0, | |
| skip_prompt=True, | |
| skip_special_tokens=True | |
| ) | |
| generation_kwargs = { | |
| **inputs, | |
| "max_new_tokens": max_tokens, | |
| "temperature": temperature, | |
| "top_p": top_p, | |
| "streamer": streamer, | |
| } | |
| thread = threading.Thread(target=model.generate, kwargs=generation_kwargs) | |
| thread.start() | |
| output = "" | |
| for chunk in streamer: | |
| output += chunk | |
| yield output | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a helpful coding assistant.", label="System message"), | |
| gr.Slider(minimum=512, maximum=8192, value=2048, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |