Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,7 +3,7 @@ import torch
|
|
| 3 |
from PIL import Image
|
| 4 |
import gradio as gr
|
| 5 |
import spaces
|
| 6 |
-
from transformers import AutoModelForCausalLM,
|
| 7 |
import os
|
| 8 |
import time
|
| 9 |
from huggingface_hub import hf_hub_download
|
|
@@ -18,7 +18,7 @@ MODEL_NAME = MODEL_ID.split("/")[-1]
|
|
| 18 |
|
| 19 |
TITLE = "<h1><center>VL-Chatbox</center></h1>"
|
| 20 |
|
| 21 |
-
DESCRIPTION = "<h3><center>MODEL
|
| 22 |
|
| 23 |
DEFAULT_SYSTEM = "You named Chatbox. You are a good assitant."
|
| 24 |
|
|
@@ -31,54 +31,15 @@ CSS = """
|
|
| 31 |
}
|
| 32 |
"""
|
| 33 |
|
| 34 |
-
filenames = [
|
| 35 |
-
"config.json",
|
| 36 |
-
"generation_config.json",
|
| 37 |
-
"model-00001-of-00004.safetensors",
|
| 38 |
-
"model-00002-of-00004.safetensors",
|
| 39 |
-
"model-00003-of-00004.safetensors",
|
| 40 |
-
"model-00004-of-00004.safetensors",
|
| 41 |
-
"model.safetensors.index.json",
|
| 42 |
-
"special_tokens_map.json",
|
| 43 |
-
"tokenizer.json",
|
| 44 |
-
"tokenizer_config.json"
|
| 45 |
-
]
|
| 46 |
-
|
| 47 |
-
for filename in filenames:
|
| 48 |
-
downloaded_model_path = hf_hub_download(
|
| 49 |
-
repo_id=MODEL_ID,
|
| 50 |
-
filename=filename,
|
| 51 |
-
local_dir="./model/"
|
| 52 |
-
)
|
| 53 |
-
|
| 54 |
-
for items in os.listdir("./model"):
|
| 55 |
-
print(items)
|
| 56 |
-
|
| 57 |
-
# def no_logger():
|
| 58 |
-
# logging.config.dictConfig({
|
| 59 |
-
# 'version': 1,
|
| 60 |
-
# 'disable_existing_loggers': True,
|
| 61 |
-
# })
|
| 62 |
-
|
| 63 |
-
|
| 64 |
model = AutoModelForCausalLM.from_pretrained(
|
| 65 |
-
|
| 66 |
torch_dtype=torch.float16,
|
| 67 |
low_cpu_mem_usage=True,
|
| 68 |
trust_remote_code=True
|
| 69 |
).to(0)
|
| 70 |
-
|
| 71 |
-
vision_tower = model.get_vision_tower()
|
| 72 |
-
vision_tower.load_model()
|
| 73 |
-
vision_tower.to(device="cuda", dtype=torch.float16)
|
| 74 |
-
image_processor = vision_tower.image_processor
|
| 75 |
-
tokenizer.pad_token = tokenizer.eos_token
|
| 76 |
|
| 77 |
-
|
| 78 |
-
terminators = [
|
| 79 |
-
tokenizer.eos_token_id,
|
| 80 |
-
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
| 81 |
-
]
|
| 82 |
|
| 83 |
|
| 84 |
|
|
@@ -88,49 +49,36 @@ def stream_chat(message, history: list, system: str, temperature: float, max_new
|
|
| 88 |
print(message)
|
| 89 |
conversation = [{"role": "system", "content": system or DEFAULT_SYSTEM}]
|
| 90 |
for prompt, answer in history:
|
| 91 |
-
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
|
| 92 |
-
|
| 93 |
conversation.append({"role": "user", "content": message['text']})
|
|
|
|
| 94 |
if message["files"]:
|
| 95 |
image = Image.open(message["files"][0]).convert('RGB')
|
| 96 |
-
# Process the conversation text
|
| 97 |
-
inputs = model.build_conversation_input_ids(
|
| 98 |
-
tokenizer,
|
| 99 |
-
query=message['text'],
|
| 100 |
-
image=image,
|
| 101 |
-
image_processor=image_processor,
|
| 102 |
-
)
|
| 103 |
-
input_ids = inputs["input_ids"].to(device='cuda', non_blocking=True)
|
| 104 |
-
images = inputs["image"].to(dtype=torch.float16, device='cuda', non_blocking=True)
|
| 105 |
else:
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
).to(model.device)
|
| 111 |
-
images = None
|
| 112 |
|
| 113 |
generate_kwargs = dict(
|
| 114 |
-
input_ids=input_ids,
|
| 115 |
max_new_tokens=max_new_tokens,
|
| 116 |
temperature=temperature,
|
| 117 |
do_sample=True,
|
| 118 |
-
|
| 119 |
-
eos_token_id=terminators,
|
| 120 |
-
images=images
|
| 121 |
)
|
| 122 |
if temperature == 0:
|
| 123 |
generate_kwargs["do_sample"] = False
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
|
| 128 |
-
outputs = outputs.strip()
|
| 129 |
-
|
| 130 |
-
for i in range(len(outputs)):
|
| 131 |
-
time.sleep(0.05)
|
| 132 |
-
yield outputs[: i + 1]
|
| 133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
|
| 136 |
chatbot = gr.Chatbot(height=450)
|
|
|
|
| 3 |
from PIL import Image
|
| 4 |
import gradio as gr
|
| 5 |
import spaces
|
| 6 |
+
from transformers import AutoModelForCausalLM, AutoProcessor,TextIteratorStreamer
|
| 7 |
import os
|
| 8 |
import time
|
| 9 |
from huggingface_hub import hf_hub_download
|
|
|
|
| 18 |
|
| 19 |
TITLE = "<h1><center>VL-Chatbox</center></h1>"
|
| 20 |
|
| 21 |
+
DESCRIPTION = "<h3><center>MODEL: " + MODEL_NAME + "</center></h3>"
|
| 22 |
|
| 23 |
DEFAULT_SYSTEM = "You named Chatbox. You are a good assitant."
|
| 24 |
|
|
|
|
| 31 |
}
|
| 32 |
"""
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
model = AutoModelForCausalLM.from_pretrained(
|
| 35 |
+
MODEL_ID,
|
| 36 |
torch_dtype=torch.float16,
|
| 37 |
low_cpu_mem_usage=True,
|
| 38 |
trust_remote_code=True
|
| 39 |
).to(0)
|
| 40 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
+
eos_token_id=processor.tokenizer.eos_token_id
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
|
| 45 |
|
|
|
|
| 49 |
print(message)
|
| 50 |
conversation = [{"role": "system", "content": system or DEFAULT_SYSTEM}]
|
| 51 |
for prompt, answer in history:
|
| 52 |
+
conversation.extend([{"role": "user", "content": f"<|image_1|>\n{prompt}"}, {"role": "assistant", "content": answer}])
|
|
|
|
| 53 |
conversation.append({"role": "user", "content": message['text']})
|
| 54 |
+
|
| 55 |
if message["files"]:
|
| 56 |
image = Image.open(message["files"][0]).convert('RGB')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
else:
|
| 58 |
+
image = None
|
| 59 |
+
|
| 60 |
+
prompt = processor.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|
| 61 |
+
inputs = processor(prompt, [image], return_tensors="pt").to(0)
|
|
|
|
|
|
|
| 62 |
|
| 63 |
generate_kwargs = dict(
|
|
|
|
| 64 |
max_new_tokens=max_new_tokens,
|
| 65 |
temperature=temperature,
|
| 66 |
do_sample=True,
|
| 67 |
+
eos_token_id=eos_token_id,
|
|
|
|
|
|
|
| 68 |
)
|
| 69 |
if temperature == 0:
|
| 70 |
generate_kwargs["do_sample"] = False
|
| 71 |
+
generate_kwargs = {**inputs, **generate_kwargs}
|
| 72 |
+
|
| 73 |
+
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True, "skip_prompt": True, 'clean_up_tokenization_spaces':False,})
|
| 74 |
|
| 75 |
+
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 76 |
+
thread.start()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
+
buffer = ""
|
| 79 |
+
for new_text in streamer:
|
| 80 |
+
buffer += new_text
|
| 81 |
+
yield buffer
|
| 82 |
|
| 83 |
|
| 84 |
chatbot = gr.Chatbot(height=450)
|