Spaces:
Running
Running
File size: 23,690 Bytes
2086f6e 300c28f 2086f6e 415e948 2086f6e bbb5424 4703376 2086f6e ff717eb 2086f6e 300c28f 2086f6e 300c28f 2086f6e ff717eb 2086f6e 21ec64b bd7d50d 21ec64b 4703376 21ec64b 7e5efdd 21ec64b bd7d50d 21ec64b 4703376 21ec64b bbb5424 4703376 21ec64b 4703376 21ec64b 4703376 bd7d50d 4703376 99974b8 21ec64b 4703376 21ec64b 4703376 934d015 4703376 934d015 ce0378e 4703376 bd7d50d d6deffc bd7d50d 4703376 21ec64b 99974b8 21ec64b bd7d50d 99974b8 21ec64b 4703376 21ec64b 4703376 d6deffc 21ec64b 99974b8 bd7d50d 21ec64b 4703376 bbb5424 21ec64b bbb5424 99974b8 bc0444f bbb5424 08aea85 bd7d50d 4703376 ff717eb 08aea85 ff717eb 4703376 21ec64b ce0378e ff717eb 4703376 bbb5424 4703376 ff717eb 4703376 ff717eb 06bde1d 21ec64b 08aea85 48d8ce0 ce0378e 48d8ce0 08aea85 48d8ce0 08aea85 48d8ce0 08aea85 48d8ce0 08aea85 48d8ce0 d6deffc 08aea85 48d8ce0 d6deffc 21ec64b 2bb40de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 |
import requests
import gradio as gr
import pandas as pd
import time
import json
import re
import os
import torch
from sentence_transformers import SentenceTransformer, util
# ---------------- Cache cleanup ----------------
os.system("rm -rf /home/user/.cache/huggingface /home/user/.cache/torch")
API_URL = "https://yata.yt/api/v1/travel/export/"
_cache = {"data": None, "timestamp": 0, "last_update": "Unknown"}
# ---------------- Load category map ----------------
with open("items.json", "r", encoding="utf-8") as f:
items_data = json.load(f)["items"]
ITEM_TO_TYPE = {v["name"]: v["type"].lower() for v in items_data.values() if "name" in v and "type" in v}
ALL_ITEMS = list(ITEM_TO_TYPE.keys())
ALL_ITEMS_LOWER = {name.lower(): name for name in ALL_ITEMS}
ALL_CATEGORIES = sorted(set(ITEM_TO_TYPE.values()))
ITEM_FILE_MTIME = os.path.getmtime("items.json")
# ---------------- Semantic model ----------------
print("π§ Loading semantic model (MiniLM)...")
embedder = SentenceTransformer("sentence-transformers/paraphrase-MiniLM-L3-v2")
print("β
Semantic model ready")
ITEM_EMBEDS = {name: embedder.encode(name, convert_to_tensor=True) for name in ITEM_TO_TYPE}
# ---------------- Auto-generate + cache category embeddings ----------------
CACHE_DIR = "cache"
os.makedirs(CACHE_DIR, exist_ok=True)
ALIASES_FILE = os.path.join(CACHE_DIR, "category_aliases.json")
EMB_FILE = os.path.join(CACHE_DIR, "category_embeds.pt")
META_FILE = os.path.join(CACHE_DIR, "meta.json")
def load_cached_embeddings():
if not (os.path.exists(ALIASES_FILE) and os.path.exists(EMB_FILE) and os.path.exists(META_FILE)):
return None, None
try:
with open(META_FILE, "r", encoding="utf-8") as f:
meta = json.load(f)
if meta.get("items_mtime") != ITEM_FILE_MTIME:
return None, None
with open(ALIASES_FILE, "r", encoding="utf-8") as f:
aliases = json.load(f)
embeds = torch.load(EMB_FILE)
print("β
Loaded cached category embeddings.")
return aliases, embeds
except Exception:
return None, None
def save_cached_embeddings(aliases, embeds):
try:
with open(ALIASES_FILE, "w", encoding="utf-8") as f:
json.dump(aliases, f, indent=2)
torch.save(embeds, EMB_FILE)
with open(META_FILE, "w", encoding="utf-8") as f:
json.dump({"items_mtime": ITEM_FILE_MTIME, "time": time.time()}, f)
except Exception as e:
print(f"β οΈ Cache save failed: {e}")
def auto_alias_categories(embedder, all_categories, all_item_names, top_k=6, threshold=0.38):
print("π€ Building category aliases dynamically...")
cat_embs = {c: embedder.encode(c, convert_to_tensor=True) for c in all_categories}
item_embs = {i: embedder.encode(i, convert_to_tensor=True) for i in all_item_names}
aliases = {}
for cat, cat_emb in cat_embs.items():
sims = {i: float(util.cos_sim(cat_emb, emb)) for i, emb in item_embs.items()}
top_related = [i for i, s in sorted(sims.items(), key=lambda x: x[1], reverse=True)[:top_k] if s > threshold]
aliases[cat] = list(set([cat] + top_related))
return aliases
CATEGORY_ALIASES, CATEGORY_EMBEDS = load_cached_embeddings()
if not CATEGORY_ALIASES or not CATEGORY_EMBEDS:
CATEGORY_ALIASES = auto_alias_categories(embedder, ALL_CATEGORIES, list(ITEM_TO_TYPE.keys()))
CATEGORY_EMBEDS = {
cat: sum([embedder.encode(a, convert_to_tensor=True) for a in aliases]) / len(aliases)
for cat, aliases in CATEGORY_ALIASES.items()
}
save_cached_embeddings(CATEGORY_ALIASES, CATEGORY_EMBEDS)
else:
print("β
Using cached dynamic category embeddings.")
# ---------------- Country mapping ----------------
COUNTRY_NAMES = {
"ARG": "Argentina", "MEX": "Mexico", "CAN": "Canada", "UNI": "United Kingdom",
"JAP": "Japan", "SOU": "South Africa", "SWI": "Switzerland", "UAE": "United Arab Emirates",
"CHI": "China", "HAW": "Hawaii", "CAY": "Cayman Islands"
}
COUNTRY_ALIASES = {
"uk": "UNI", "england": "UNI", "united kingdom": "UNI",
"uae": "UAE", "united arab emirates": "UAE",
"south africa": "SOU", "switzerland": "SWI",
"cayman": "CAY", "cayman islands": "CAY",
"argentina": "ARG", "mexico": "MEX", "canada": "CAN",
"japan": "JAP", "china": "CHI", "hawaii": "HAW"
}
def normalize_country_query(q: str) -> str | None:
q = (q or "").strip().lower()
if not q:
return None
if q in COUNTRY_ALIASES:
return COUNTRY_ALIASES[q]
if len(q) == 3 and q.upper() in COUNTRY_NAMES:
return q.upper()
return None
# ---------------- Helpers ----------------
def parse_freeform_query(text: str):
if not text:
return "", ""
text = text.strip().lower()
m = re.match(r"(.+?)\s+in\s+(.+)", text, flags=re.IGNORECASE)
if m:
return m.group(1).strip(), m.group(2).strip()
parts = text.split()
if len(parts) == 2:
first, second = parts
if normalize_country_query(first):
return second, first
elif normalize_country_query(second):
return first, second
return text, ""
def semantic_match(query, top_k=15):
if not query:
return {"category": None, "items": []}
query = query.strip().lower()
q_emb = embedder.encode(query, convert_to_tensor=True)
sims_items = {n: float(util.cos_sim(q_emb, emb)) for n, emb in ITEM_EMBEDS.items()}
ranked_items = sorted(sims_items.items(), key=lambda x: x[1], reverse=True)
item_hits = [n for n, score in ranked_items[:top_k] if score > 0.35]
sims_cats = {c: float(util.cos_sim(q_emb, emb)) for c, emb in CATEGORY_EMBEDS.items()}
ranked_cats = sorted(sims_cats.items(), key=lambda x: x[1], reverse=True)
top_cat, cat_score = (ranked_cats[0] if ranked_cats else (None, 0.0))
related_items = []
if top_cat and cat_score > 0.35:
related_items = [n for n, t in ITEM_TO_TYPE.items() if t == top_cat]
combined = list(set(item_hits + related_items))
return {"category": top_cat if related_items else None, "items": combined}
# ---------------- Fetch YATA ----------------
def fetch_yata(force_refresh=False):
if not force_refresh and _cache["data"] and (time.time() - _cache["timestamp"] < 300):
return _cache["data"], _cache["last_update"]
try:
resp = requests.get(API_URL, timeout=10)
resp.raise_for_status()
data = resp.json()
_cache.update({
"data": data,
"timestamp": time.time(),
"last_update": time.strftime("%Y-%m-%dT%H:%M:%SZ", time.gmtime()) # UTC ISO
})
return data, _cache["last_update"]
except Exception as e:
print(f"β Fetch error: {e}")
return {"stocks": {}}, "Fetch failed"
def get_live_categories(data):
live_cats = set()
for _, cdata in data.get("stocks", {}).items():
for item in cdata.get("stocks", []):
name = item.get("name")
cat = ITEM_TO_TYPE.get(name)
if cat:
live_cats.add(cat.lower())
return sorted(live_cats)
# ---------------- Core logic: single query ----------------
def query_inventory(query_text="", category="", country_name="", capacity=10, refresh=False):
data, last_update = fetch_yata(force_refresh=refresh)
rows = []
# Parse freeform if present
parsed_item, parsed_country = parse_freeform_query(query_text)
if not country_name and parsed_country:
country_name = parsed_country
item_term = parsed_item
# Detect if user meant an exact item (e.g., "xanax")
item_lower = (item_term or "").lower()
exact_item_name = ALL_ITEMS_LOWER.get(item_lower)
sem = semantic_match(item_term) if item_term and not exact_item_name else {"category": None, "items": []}
semantic_items = sem["items"]
semantic_category = sem["category"]
# Country gating (strict)
user_code = normalize_country_query(country_name)
for code_raw, cdata in data.get("stocks", {}).items():
code = code_raw.upper()
cname = COUNTRY_NAMES.get(code, code)
if country_name:
if user_code:
if code != user_code:
continue
elif country_name.lower() not in cname.lower():
continue
update_ts = cdata.get("update")
update_str = time.strftime("%Y-%m-%dT%H:%M:%SZ", time.gmtime(update_ts)) if update_ts else "Unknown"
for item in cdata.get("stocks", []):
iname = item.get("name", "")
itype = ITEM_TO_TYPE.get(iname, "").lower()
qty = item.get("quantity", 0)
cost = item.get("cost", 0)
# Strict item filtering
if item_term:
if exact_item_name:
item_ok = (iname.lower() == item_lower) # exact item only
else:
item_ok = (
(item_lower and item_lower in iname.lower()) or
(semantic_category and itype == semantic_category.lower()) or
(iname in semantic_items)
)
elif category:
item_ok = (category.lower() == itype)
else:
item_ok = True
if item_ok:
rows.append({
"Country": cname,
"Item": iname,
"Category": itype.title(),
"Quantity": qty,
"Cost": cost,
"Max Capacity Cost": cost * capacity,
"Updated": update_str
})
if not rows:
return pd.DataFrame([{"Result": "No inventory found for that query."}]), f"Last update: {last_update}"
df = pd.DataFrame(rows).sort_values(by=["Country", "Item"])
for col in ["Quantity", "Cost", "Max Capacity Cost"]:
df[col] = df[col].apply(lambda x: f"{x:,.0f}" if isinstance(x, (int, float)) else x)
return df, f"Last update: {last_update}"
# ---------------- Multi-query (convenience buttons) ----------------
def run_multi(phrases, capacity):
"""
Execute multiple 'item in country' phrases with strict per-country filtering and no duplicates.
"""
data, last_update = fetch_yata(False)
# Group requested item_terms by normalized country code
tasks_by_code = {} # code -> [item_term, ...]
for phrase in phrases:
item_term, country_term = parse_freeform_query(phrase)
code = normalize_country_query(country_term) or ""
if not code:
# If country not recognized (shouldn't happen with our lists), fall back to pass-through single query
code = "__ALL__"
tasks_by_code.setdefault(code, []).append(item_term)
rows = []
for code_raw, cdata in data.get("stocks", {}).items():
code = code_raw.upper()
if code not in tasks_by_code:
continue
cname = COUNTRY_NAMES.get(code, code)
update_ts = cdata.get("update")
update_str = time.strftime("%Y-%m-%dT%H:%M:%SZ", time.gmtime(update_ts)) if update_ts else "Unknown"
# Precompute semantic intents for each term in this country
compiled_terms = []
for term in tasks_by_code[code]:
t = (term or "").strip().lower()
exact_item_name = ALL_ITEMS_LOWER.get(t)
if exact_item_name:
compiled_terms.append({"mode": "exact", "value": t})
else:
sem = semantic_match(t) if t else {"category": None, "items": []}
compiled_terms.append({
"mode": "fuzzy",
"value": t,
"category": (sem["category"] or "").lower() if sem["category"] else "",
"items": set(sem["items"])
})
# Scan this country's items once
for item in cdata.get("stocks", []):
iname = item.get("name", "")
itype = ITEM_TO_TYPE.get(iname, "").lower()
qty = item.get("quantity", 0)
cost = item.get("cost", 0)
matched = False
for ct in compiled_terms:
if ct["mode"] == "exact":
if iname.lower() == ct["value"]:
matched = True
break
else:
q = ct["value"]
if (q and q in iname.lower()) or (ct["category"] and itype == ct["category"]) or (iname in ct["items"]):
matched = True
break
if matched:
rows.append({
"Country": cname,
"Item": iname,
"Category": itype.title(),
"Quantity": qty,
"Cost": cost,
"Max Capacity Cost": cost * capacity,
"Updated": update_str
})
if not rows:
return pd.DataFrame([{"Result": "No results for that set."}]), f"Last update: {last_update}"
# Deduplicate rows by (Country, Item, Updated)
df = pd.DataFrame(rows).drop_duplicates(subset=["Country", "Item", "Updated"]).sort_values(by=["Country", "Item"])
for col in ["Quantity", "Cost", "Max Capacity Cost"]:
df[col] = df[col].apply(lambda x: f"{x:,.0f}" if isinstance(x, (int, float)) else x)
return df, f"Last update: {last_update}"
# ---------------- Wrappers ----------------
def run_query(query_text, category, country, capacity, refresh):
data, _ = fetch_yata(force_refresh=refresh)
df, ts = query_inventory(query_text, category, country, capacity, refresh)
live_categories = get_live_categories(data)
return df, ts, gr.update(choices=[""] + live_categories)
# ---------------- Gradio UI ----------------
with gr.Blocks(title="π§³ Torn Foreign Stocks") as iface:
gr.Markdown("## π§³ Torn Foreign Stocks")
gr.Markdown("_Search YATA's Foreign Stocks_")
# Convenience buttons
with gr.Row():
btn_short = gr.Button("πΈ Flushies (short haul)")
btn_medium = gr.Button("π§Έ Flushies (medium haul)")
btn_long = gr.Button("π Flushies (long haul)")
btn_xanax = gr.Button("π Xanax (SA)")
btn_temps = gr.Button("𧨠Temps")
query_box = gr.Textbox(label="Search (semantic, e.g. 'flowers in England')")
category_drop = gr.Dropdown(label="Category (optional exact match)", choices=[""] + ALL_CATEGORIES)
country_box = gr.Textbox(label="Country (optional, e.g. UK, Cayman, Japan)")
capacity_slider = gr.Number(label="Travel Capacity", value=10, minimum=5, maximum=88, precision=0)
refresh_check = gr.Checkbox(label="Force refresh (ignore cache)", value=False)
result_df = gr.Dataframe(label="Results")
meta_box = gr.Textbox(label="Metadata / Last Update")
run_btn = gr.Button("π Search / Refresh")
run_btn.click(run_query,
inputs=[query_box, category_drop, country_box, capacity_slider, refresh_check],
outputs=[result_df, meta_box, category_drop])
# Convenience button bindings (use run_multi with per-country grouping)
btn_short.click(lambda c: run_multi(
["flowers in mexico", "flowers in cayman islands", "flowers in canada",
"plushies in mexico", "plushies in cayman islands", "plushies in canada"], c),
inputs=[capacity_slider], outputs=[result_df, meta_box])
btn_medium.click(lambda c: run_multi(
["flowers in hawaii", "flowers in united kingdom", "flowers in argentina",
"flowers in switzerland", "flowers in japan",
"plushies in hawaii", "plushies in united kingdom", "plushies in argentina",
"plushies in switzerland", "plushies in japan"], c),
inputs=[capacity_slider], outputs=[result_df, meta_box])
btn_long.click(lambda c: run_multi(
["flowers in uae", "flowers in china", "flowers in south africa",
"plushies in uae", "plushies in china", "plushies in south africa"], c),
inputs=[capacity_slider], outputs=[result_df, meta_box])
btn_xanax.click(lambda c: run_multi(["xanax in south africa"], c),
inputs=[capacity_slider], outputs=[result_df, meta_box])
btn_temps.click(lambda c: run_multi(
["tear gas in argentina", "smoke grenade in south africa", "flash grenade in switzerland"], c),
inputs=[capacity_slider], outputs=[result_df, meta_box])
# --- JS: global error banner (captures JS errors & unhandled promise rejections) ---
gr.HTML("""
<script>
(function () {
const DEDUP_MS = 10000; // suppress duplicates for 10s
const errorTimestamps = new Map();
// Inject minimal styles
const css = `
.errban-wrap{position:fixed;inset:auto 0 0 0;top:0;z-index:2147483647;pointer-events:none}
.errban{pointer-events:auto;margin:8px;border-left:4px solid #ef4444;background:#fee2e2;color:#991b1b;
box-shadow:0 6px 16px rgba(0,0,0,.15);border-radius:8px;overflow:hidden;font:14px/1.4 system-ui,-apple-system,Segoe UI,Roboto,sans-serif}
.errban-hd{display:flex;gap:8px;align-items:center;padding:10px 12px}
.errban-title{font-weight:600;flex:1;min-width:0;white-space:nowrap;overflow:hidden;text-overflow:ellipsis}
.errban-btn{appearance:none;border:0;background:transparent;color:#7f1d1d;cursor:pointer;padding:6px 8px;border-radius:6px}
.errban-btn:hover{background:rgba(153,27,27,.1)}
.errban-body{display:none;border-top:1px dashed rgba(153,27,27,.35);padding:10px 12px;background:#ffe4e6;max-height:40vh;overflow:auto;font-family:ui-monospace,SFMono-Regular,Menlo,Consolas,monospace;white-space:pre-wrap}
@media (prefers-color-scheme: dark){
.errban{background:#2b0f12;color:#ffd7d7;border-left-color:#ff6b6b}
.errban-body{background:#361317}
.errban-btn{color:#ffd7d7}
.errban-btn:hover{background:rgba(255,215,215,.12)}
}`;
const style = document.createElement('style');
style.textContent = css;
document.head.appendChild(style);
// Root container
const root = document.createElement('div');
root.className = 'errban-wrap';
document.body.appendChild(root);
function now() { return Date.now(); }
function dedup(key) {
const t = errorTimestamps.get(key) || 0;
if (now() - t < DEDUP_MS) return true;
errorTimestamps.set(key, now());
return false;
}
function showBanner(title, details) {
const key = title + '|' + (details || '');
if (dedup(key)) return;
const el = document.createElement('div');
el.className = 'errban';
const hd = document.createElement('div');
hd.className = 'errban-hd';
const ttl = document.createElement('div');
ttl.className = 'errban-title';
ttl.textContent = title;
const copyBtn = document.createElement('button');
copyBtn.className = 'errban-btn';
copyBtn.textContent = 'Copy';
copyBtn.title = 'Copy error details';
copyBtn.onclick = async () => {
try {
await navigator.clipboard.writeText(details || title);
copyBtn.textContent = 'Copied!';
setTimeout(() => (copyBtn.textContent = 'Copy'), 1200);
} catch {}
};
const detBtn = document.createElement('button');
detBtn.className = 'errban-btn';
detBtn.textContent = 'Details';
const body = document.createElement('div');
body.className = 'errban-body';
body.textContent = (details || '').trim() || '(no additional details)';
detBtn.onclick = () => {
body.style.display = body.style.display === 'block' ? 'none' : 'block';
};
const closeBtn = document.createElement('button');
closeBtn.className = 'errban-btn';
closeBtn.textContent = 'Dismiss';
closeBtn.onclick = () => el.remove();
hd.append(ttl, copyBtn, detBtn, closeBtn);
el.appendChild(hd);
el.appendChild(body);
// Insert newest at top
root.prepend(el);
}
function formatErrorEvent(ev) {
const parts = [];
if (ev.message) parts.push(ev.message);
if (ev.filename) parts.push(`${ev.filename}${ev.lineno ? ':' + ev.lineno : ''}${ev.colno ? ':' + ev.colno : ''}`);
if (ev.error && ev.error.stack) parts.push(ev.error.stack);
return {
title: ev.message || 'Script error',
details: parts.join('\n')
};
}
function formatRejection(ev) {
const r = ev.reason;
let title = 'Unhandled promise rejection';
let details = '';
if (r && typeof r === 'object') {
title = r.message ? `${title}: ${r.message}` : title;
details = (r.stack || JSON.stringify(r, Object.getOwnPropertyNames(r))).toString();
} else {
details = String(r);
}
return { title, details };
}
// Global listeners
window.addEventListener('error', (ev) => {
const { title, details } = formatErrorEvent(ev);
showBanner(title, details);
});
window.addEventListener('unhandledrejection', (ev) => {
const { title, details } = formatRejection(ev);
showBanner(title, details);
});
// Manual reporting API
window.reportErrorBanner = function (err, context) {
const title = context ? `Error: ${context}` : (err && err.message) || 'Error';
const details = (err && err.stack) ? err.stack : String(err);
showBanner(title, details);
};
})();
</script>
""")
# --- JS: convert all UTC ISO timestamps to browser's local time ---
gr.HTML("""
<script>
(function () {
// Match ISO UTC timestamps (e.g., 2025-10-25T02:05:36Z)
const isoRe = /\\b\\d{4}-\\d{2}-\\d{2}T\\d{2}:\\d{2}:\\d{2}Z\\b/g;
const fmt = new Intl.DateTimeFormat([], {
year: "numeric", month: "2-digit", day: "2-digit",
hour: "2-digit", minute: "2-digit", second: "2-digit"
});
function convertInInputs(root) {
// Only update values for inputs/textareas (e.g., your "Last update" textbox)
const fields = root.querySelectorAll('input[type="text"], textarea');
fields.forEach(el => {
if (typeof el.value === "string" && isoRe.test(el.value)) {
el.value = el.value.replace(isoRe, m => fmt.format(new Date(m)));
}
});
}
function convertInTableCells(root) {
// Only touch <td> text nodes, not container divs/spans
const tds = root.querySelectorAll("td");
tds.forEach(td => {
td.childNodes.forEach(node => {
if (node.nodeType === Node.TEXT_NODE && isoRe.test(node.nodeValue)) {
node.nodeValue = node.nodeValue.replace(isoRe, m => fmt.format(new Date(m)));
}
});
});
}
function runOnce() {
const roots = [document];
const app = document.querySelector("gradio-app");
if (app && app.shadowRoot) roots.push(app.shadowRoot);
roots.forEach(r => {
convertInInputs(r);
convertInTableCells(r);
});
}
// Convert initially and on any UI updates without clobbering DOM
runOnce();
const obs = new MutationObserver(() => runOnce());
obs.observe(document.documentElement, { childList: true, subtree: true, characterData: true });
})();
</script>
""")
try:
iface.launch()
except Exception as e:
import traceback
traceback.print_exc() |