Spaces:
Runtime error
Runtime error
initial commit
Browse files
app.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
|
| 4 |
+
from sklearn.cluster import AgglomerativeClustering
|
| 5 |
+
from sklearn.neighbors import kneighbors_graph
|
| 6 |
+
|
| 7 |
+
import gradio as gr
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
np.random.seed(42)
|
| 11 |
+
|
| 12 |
+
def agglomorative_cluster(n_samples: int, n_neighbours: int, n_clusters: int, linkage: str, connectivity: bool) -> "plt.Figure":
|
| 13 |
+
|
| 14 |
+
t = 1.5 * np.pi * (1 + 3 * np.random.rand(1, n_samples))
|
| 15 |
+
x = t * np.cos(t)
|
| 16 |
+
y = t * np.sin(t)
|
| 17 |
+
|
| 18 |
+
X = np.concatenate((x, y))
|
| 19 |
+
X += 0.7 * np.random.randn(2, n_samples)
|
| 20 |
+
X = X.T
|
| 21 |
+
|
| 22 |
+
knn_graph = kneighbors_graph(X, n_neighbors=n_neighbours, include_self=False)
|
| 23 |
+
connectivity = knn_graph if not connectivity else None
|
| 24 |
+
|
| 25 |
+
fig, ax = plt.subplots(1, 1, figsize=(24, 15))
|
| 26 |
+
model = AgglomerativeClustering(linkage=linkage, connectivity=connectivity, n_clusters=int(n_clusters))
|
| 27 |
+
model.fit(X)
|
| 28 |
+
ax.scatter(X[:, 0], X[:, 1], c=model.labels_, cmap=plt.cm.nipy_spectral)
|
| 29 |
+
ax.axis("equal")
|
| 30 |
+
ax.axis("off")
|
| 31 |
+
|
| 32 |
+
return fig
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
demo = gr.Interface(
|
| 39 |
+
fn = agglomorative_cluster,
|
| 40 |
+
inputs = [gr.Slider(0, 100_000, label="n_samples", info="the number of samples in the data.", step=1),
|
| 41 |
+
gr.Slider(0, 30, label="n_neighbours", info="the number of neighbours in the data", step=1),
|
| 42 |
+
gr.Dropdown([3, 30], label="n_clusters", info="the number of clusters in the data"),
|
| 43 |
+
gr.Dropdown(['average', 'complete', 'ward', 'single'], label="linkage", info="the different types of aggolomorative clustering techniques"),
|
| 44 |
+
gr.Checkbox(True, label="connectivity", info="whether to impose a connectivity into the graph")],
|
| 45 |
+
|
| 46 |
+
outputs = [gr.Plot(label="Plot")]
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
demo.launch()
|
| 50 |
+
|