Spaces:
Sleeping
Sleeping
Update myagent.py
Browse files- myagent.py +13 -18
myagent.py
CHANGED
|
@@ -41,7 +41,15 @@ class BasicAgent:
|
|
| 41 |
return error
|
| 42 |
|
| 43 |
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
# Create a wrapper class that matches the expected interface
|
| 47 |
class LocalLlamaModel:
|
|
@@ -50,23 +58,10 @@ class LocalLlamaModel:
|
|
| 50 |
self.tokenizer = tokenizer
|
| 51 |
self.device = model.device if hasattr(model, 'device') else 'cpu'
|
| 52 |
|
| 53 |
-
def generate(self, prompt: str, max_new_tokens=512, **kwargs):
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
with torch.no_grad():
|
| 58 |
-
output_ids = self.model.generate(
|
| 59 |
-
input_ids,
|
| 60 |
-
max_new_tokens=max_new_tokens,
|
| 61 |
-
do_sample=True,
|
| 62 |
-
temperature=0.7,
|
| 63 |
-
pad_token_id=self.tokenizer.eos_token_id,
|
| 64 |
-
**kwargs
|
| 65 |
-
)
|
| 66 |
-
|
| 67 |
-
# Decode only the new tokens (excluding the input)
|
| 68 |
-
new_tokens = output_ids[0][input_ids.shape[1]:]
|
| 69 |
-
output = self.tokenizer.decode(new_tokens, skip_special_tokens=True)
|
| 70 |
return output
|
| 71 |
|
| 72 |
def __call__(self, prompt: str, max_new_tokens=512, **kwargs):
|
|
|
|
| 41 |
return error
|
| 42 |
|
| 43 |
|
| 44 |
+
|
| 45 |
+
# Model configuration
|
| 46 |
+
model_id = "bartowski/Llama-3.2-3B-Instruct-GGUF"
|
| 47 |
+
filename = "Llama-3.2-3B-Instruct-Q4_K_M.gguf"
|
| 48 |
+
|
| 49 |
+
# Load tokenizer and model
|
| 50 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, gguf_file=filename)
|
| 51 |
+
model_init = AutoModelForCausalLM.from_pretrained(model_id, gguf_file=filename, torch_dtype=torch_dtype)
|
| 52 |
+
|
| 53 |
|
| 54 |
# Create a wrapper class that matches the expected interface
|
| 55 |
class LocalLlamaModel:
|
|
|
|
| 58 |
self.tokenizer = tokenizer
|
| 59 |
self.device = model.device if hasattr(model, 'device') else 'cpu'
|
| 60 |
|
| 61 |
+
def generate(self, prompt: str, max_new_tokens=512*10, **kwargs):
|
| 62 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
|
| 63 |
+
output_ids = model.generate(input_ids, max_new_tokens=max_new_tokens)
|
| 64 |
+
output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
return output
|
| 66 |
|
| 67 |
def __call__(self, prompt: str, max_new_tokens=512, **kwargs):
|