Spaces:
Sleeping
Sleeping
Update myagent.py
Browse files- myagent.py +8 -8
myagent.py
CHANGED
|
@@ -5,6 +5,7 @@ from tools.fetch import fetch_webpage
|
|
| 5 |
from tools.yttranscript import get_youtube_transcript, get_youtube_title_description
|
| 6 |
import myprompts
|
| 7 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
|
|
| 8 |
import torch
|
| 9 |
# --- Basic Agent Definition ---
|
| 10 |
class BasicAgent:
|
|
@@ -49,18 +50,17 @@ class BasicAgent:
|
|
| 49 |
# )
|
| 50 |
|
| 51 |
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 55 |
-
model_init = AutoModelForCausalLM.from_pretrained(
|
| 56 |
-
MODEL_NAME,
|
| 57 |
-
device_map="auto",
|
| 58 |
-
torch_dtype=torch.float16 # or bfloat16
|
| 59 |
-
)
|
| 60 |
|
| 61 |
def model(prompt: str, max_new_tokens=512):
|
| 62 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
|
| 63 |
-
output_ids =
|
| 64 |
output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 65 |
return output
|
| 66 |
|
|
|
|
| 5 |
from tools.yttranscript import get_youtube_transcript, get_youtube_title_description
|
| 6 |
import myprompts
|
| 7 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 8 |
+
|
| 9 |
import torch
|
| 10 |
# --- Basic Agent Definition ---
|
| 11 |
class BasicAgent:
|
|
|
|
| 50 |
# )
|
| 51 |
|
| 52 |
|
| 53 |
+
model_id = "bartowski/Llama-3.2-3B-Instruct-GGUF"
|
| 54 |
+
filename = "Llama-3.2-3B-Instruct-Q4_K_M.gguf"
|
| 55 |
+
|
| 56 |
+
torch_dtype = torch.float32 # could be torch.float16 or torch.bfloat16 too
|
| 57 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, gguf_file=filename)
|
| 58 |
+
model_init = AutoModelForCausalLM.from_pretrained(model_id, gguf_file=filename, torch_dtype=torch_dtype)
|
| 59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
def model(prompt: str, max_new_tokens=512):
|
| 62 |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
|
| 63 |
+
output_ids = model_init.generate(input_ids, max_new_tokens=max_new_tokens)
|
| 64 |
output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 65 |
return output
|
| 66 |
|