Spaces:
Sleeping
Sleeping
Update myagent.py
Browse files- myagent.py +38 -22
myagent.py
CHANGED
|
@@ -43,30 +43,46 @@ class BasicAgent:
|
|
| 43 |
|
| 44 |
|
| 45 |
|
| 46 |
-
#
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
output_ids = model_init.generate(input_ids, max_new_tokens=max_new_tokens)
|
| 64 |
-
output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 65 |
-
return output
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
if __name__ == "__main__":
|
| 72 |
# Example usage
|
|
|
|
| 43 |
|
| 44 |
|
| 45 |
|
| 46 |
+
# Create a wrapper class that matches the expected interface
|
| 47 |
+
class LocalLlamaModel:
|
| 48 |
+
def __init__(self, model, tokenizer):
|
| 49 |
+
self.model = model
|
| 50 |
+
self.tokenizer = tokenizer
|
| 51 |
+
self.device = model.device if hasattr(model, 'device') else 'cpu'
|
| 52 |
+
|
| 53 |
+
def generate(self, prompt: str, max_new_tokens=512, **kwargs):
|
| 54 |
+
"""Generate text using the local model"""
|
| 55 |
+
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
|
| 56 |
+
|
| 57 |
+
with torch.no_grad():
|
| 58 |
+
output_ids = self.model.generate(
|
| 59 |
+
input_ids,
|
| 60 |
+
max_new_tokens=max_new_tokens,
|
| 61 |
+
do_sample=True,
|
| 62 |
+
temperature=0.7,
|
| 63 |
+
pad_token_id=self.tokenizer.eos_token_id,
|
| 64 |
+
**kwargs
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
# Decode only the new tokens (excluding the input)
|
| 68 |
+
new_tokens = output_ids[0][input_ids.shape[1]:]
|
| 69 |
+
output = self.tokenizer.decode(new_tokens, skip_special_tokens=True)
|
| 70 |
+
return output
|
| 71 |
+
|
| 72 |
+
def __call__(self, prompt: str, max_new_tokens=512, **kwargs):
|
| 73 |
+
"""Make the model callable like a function"""
|
| 74 |
+
return self.generate(prompt, max_new_tokens, **kwargs)
|
| 75 |
|
| 76 |
+
# Create the model instance
|
| 77 |
+
model = LocalLlamaModel(model_init, tokenizer)
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
+
# Now create your agents - these should work with the wrapped model
|
| 80 |
+
reviewer_agent = ToolCallingAgent(model=model, tools=[])
|
| 81 |
+
model_agent = ToolCallingAgent(model=model, tools=[fetch_webpage])
|
| 82 |
+
gaia_agent = CodeAgent(
|
| 83 |
+
tools=[fetch_webpage, get_youtube_title_description, get_youtube_transcript],
|
| 84 |
+
model=model
|
| 85 |
+
)
|
| 86 |
|
| 87 |
if __name__ == "__main__":
|
| 88 |
# Example usage
|