Spaces:
Sleeping
Sleeping
Update myagent.py
Browse files- myagent.py +57 -39
myagent.py
CHANGED
|
@@ -5,14 +5,14 @@ from tools.fetch import fetch_webpage
|
|
| 5 |
from tools.yttranscript import get_youtube_transcript, get_youtube_title_description
|
| 6 |
import myprompts
|
| 7 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
|
|
| 8 |
|
| 9 |
-
import torch
|
| 10 |
# --- Basic Agent Definition ---
|
| 11 |
class BasicAgent:
|
| 12 |
def __init__(self):
|
| 13 |
print("BasicAgent initialized.")
|
|
|
|
| 14 |
def __call__(self, question: str) -> str:
|
| 15 |
-
|
| 16 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 17 |
|
| 18 |
try:
|
|
@@ -40,14 +40,12 @@ class BasicAgent:
|
|
| 40 |
print(error)
|
| 41 |
return error
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
# Load model and tokenizer
|
| 46 |
model_id = "LiquidAI/LFM2-1.2B"
|
| 47 |
model = AutoModelForCausalLM.from_pretrained(
|
| 48 |
model_id,
|
| 49 |
device_map="auto",
|
| 50 |
-
torch_dtype=
|
| 51 |
trust_remote_code=True,
|
| 52 |
# attn_implementation="flash_attention_2" # <- uncomment on compatible GPU
|
| 53 |
)
|
|
@@ -58,52 +56,74 @@ class LocalLlamaModel:
|
|
| 58 |
def __init__(self, model, tokenizer):
|
| 59 |
self.model = model
|
| 60 |
self.tokenizer = tokenizer
|
| 61 |
-
self.device = 'cpu'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
-
def generate(self, prompt
|
| 64 |
try:
|
| 65 |
-
# Generate answer using the provided prompt - following the recommended pattern
|
| 66 |
-
# input_ids = self.tokenizer.apply_chat_template(
|
| 67 |
-
# [{"role": "user", "content": str(prompt)}],
|
| 68 |
-
# add_generation_prompt=True,
|
| 69 |
-
# return_tensors="pt",
|
| 70 |
-
# tokenize=True,
|
| 71 |
-
# ).to(self.model.device)
|
| 72 |
|
| 73 |
print("Prompt: ", prompt)
|
| 74 |
print("Prompt type: ", type(prompt))
|
|
|
|
|
|
|
| 75 |
|
| 76 |
-
|
| 77 |
|
| 78 |
-
#
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
do_sample=True,
|
| 82 |
-
temperature=0.3,
|
| 83 |
-
min_p=0.15,
|
| 84 |
-
repetition_penalty=1.05,
|
| 85 |
-
max_new_tokens=max_new_tokens,
|
| 86 |
-
)
|
| 87 |
|
| 88 |
-
#
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
-
#
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
return assistant_response
|
| 97 |
-
else:
|
| 98 |
-
# Fallback: return the full decoded output
|
| 99 |
-
return decoded_output
|
| 100 |
|
| 101 |
except Exception as e:
|
| 102 |
print(f"Error in model generation: {e}")
|
| 103 |
return f"Error generating response: {str(e)}"
|
| 104 |
|
| 105 |
-
|
| 106 |
-
def __call__(self, prompt: str, max_new_tokens=512, **kwargs):
|
| 107 |
"""Make the model callable like a function"""
|
| 108 |
return self.generate(prompt, max_new_tokens, **kwargs)
|
| 109 |
|
|
@@ -118,8 +138,6 @@ gaia_agent = CodeAgent(
|
|
| 118 |
model=wrapped_model
|
| 119 |
)
|
| 120 |
|
| 121 |
-
|
| 122 |
-
|
| 123 |
if __name__ == "__main__":
|
| 124 |
# Example usage
|
| 125 |
question = "What was the actual enrollment of the Malko competition in 2023?"
|
|
|
|
| 5 |
from tools.yttranscript import get_youtube_transcript, get_youtube_title_description
|
| 6 |
import myprompts
|
| 7 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 8 |
+
t torch
|
| 9 |
|
|
|
|
| 10 |
# --- Basic Agent Definition ---
|
| 11 |
class BasicAgent:
|
| 12 |
def __init__(self):
|
| 13 |
print("BasicAgent initialized.")
|
| 14 |
+
|
| 15 |
def __call__(self, question: str) -> str:
|
|
|
|
| 16 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 17 |
|
| 18 |
try:
|
|
|
|
| 40 |
print(error)
|
| 41 |
return error
|
| 42 |
|
|
|
|
|
|
|
| 43 |
# Load model and tokenizer
|
| 44 |
model_id = "LiquidAI/LFM2-1.2B"
|
| 45 |
model = AutoModelForCausalLM.from_pretrained(
|
| 46 |
model_id,
|
| 47 |
device_map="auto",
|
| 48 |
+
torch_dtype=torch.bfloat16, # Fixed: was string, should be torch dtype
|
| 49 |
trust_remote_code=True,
|
| 50 |
# attn_implementation="flash_attention_2" # <- uncomment on compatible GPU
|
| 51 |
)
|
|
|
|
| 56 |
def __init__(self, model, tokenizer):
|
| 57 |
self.model = model
|
| 58 |
self.tokenizer = tokenizer
|
| 59 |
+
self.device = model.device if hasattr(model, 'device') else 'cpu'
|
| 60 |
+
|
| 61 |
+
def _extract_text_from_messages(self, messages):
|
| 62 |
+
"""Extract text content from ChatMessage objects or handle string input"""
|
| 63 |
+
if isinstance(messages, str):
|
| 64 |
+
return messages
|
| 65 |
+
elif isinstance(messages, list):
|
| 66 |
+
# Handle list of ChatMessage objects
|
| 67 |
+
text_parts = []
|
| 68 |
+
for msg in messages:
|
| 69 |
+
if hasattr(msg, 'content'):
|
| 70 |
+
# Handle ChatMessage with content attribute
|
| 71 |
+
if isinstance(msg.content, list):
|
| 72 |
+
# Content is a list of content items
|
| 73 |
+
for content_item in msg.content:
|
| 74 |
+
if isinstance(content_item, dict) and 'text' in content_item:
|
| 75 |
+
text_parts.append(content_item['text'])
|
| 76 |
+
elif hasattr(content_item, 'text'):
|
| 77 |
+
text_parts.append(content_item.text)
|
| 78 |
+
elif isinstance(msg.content, str):
|
| 79 |
+
text_parts.append(msg.content)
|
| 80 |
+
elif isinstance(msg, dict) and 'content' in msg:
|
| 81 |
+
# Handle dictionary format
|
| 82 |
+
text_parts.append(str(msg['content']))
|
| 83 |
+
else:
|
| 84 |
+
# Fallback: convert to string
|
| 85 |
+
text_parts.append(str(msg))
|
| 86 |
+
return '\n'.join(text_parts)
|
| 87 |
+
else:
|
| 88 |
+
return str(messages)
|
| 89 |
|
| 90 |
+
def generate(self, prompt, max_new_tokens=512*5, **kwargs):
|
| 91 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
print("Prompt: ", prompt)
|
| 94 |
print("Prompt type: ", type(prompt))
|
| 95 |
+
# Extract text from the prompt (which might be ChatMessage objects)
|
| 96 |
+
text_prompt = self._extract_text_from_messages(prompt)
|
| 97 |
|
| 98 |
+
print("Extracted text prompt:", text_prompt[:200] + "..." if len(text_prompt) > 200 else text_prompt)
|
| 99 |
|
| 100 |
+
# Tokenize the text prompt
|
| 101 |
+
inputs = self.tokenizer(text_prompt, return_tensors="pt").to(self.model.device)
|
| 102 |
+
input_ids = inputs['input_ids']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
+
# Generate output
|
| 105 |
+
with torch.no_grad():
|
| 106 |
+
output = self.model.generate(
|
| 107 |
+
input_ids,
|
| 108 |
+
do_sample=True,
|
| 109 |
+
temperature=0.3,
|
| 110 |
+
min_p=0.15,
|
| 111 |
+
repetition_penalty=1.05,
|
| 112 |
+
max_new_tokens=max_new_tokens,
|
| 113 |
+
pad_token_id=self.tokenizer.eos_token_id, # Handle padding
|
| 114 |
+
)
|
| 115 |
|
| 116 |
+
# Decode only the new tokens (exclude the input)
|
| 117 |
+
new_tokens = output[0][len(input_ids[0]):]
|
| 118 |
+
response = self.tokenizer.decode(new_tokens, skip_special_tokens=True)
|
| 119 |
+
|
| 120 |
+
return response.strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
except Exception as e:
|
| 123 |
print(f"Error in model generation: {e}")
|
| 124 |
return f"Error generating response: {str(e)}"
|
| 125 |
|
| 126 |
+
def __call__(self, prompt, max_new_tokens=512, **kwargs):
|
|
|
|
| 127 |
"""Make the model callable like a function"""
|
| 128 |
return self.generate(prompt, max_new_tokens, **kwargs)
|
| 129 |
|
|
|
|
| 138 |
model=wrapped_model
|
| 139 |
)
|
| 140 |
|
|
|
|
|
|
|
| 141 |
if __name__ == "__main__":
|
| 142 |
# Example usage
|
| 143 |
question = "What was the actual enrollment of the Malko competition in 2023?"
|