Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved. | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import dataclasses | |
| import json | |
| import os | |
| from pathlib import Path | |
| import gradio as gr | |
| import torch | |
| import spaces | |
| from uso.flux.pipeline import USOPipeline | |
| from transformers import SiglipVisionModel, SiglipImageProcessor | |
| with open("assets/uso_text.svg", "r", encoding="utf-8") as svg_file: | |
| text_content = svg_file.read() | |
| with open("assets/uso_logo.svg", "r", encoding="utf-8") as svg_file: | |
| logo_content = svg_file.read() | |
| title = f""" | |
| <div style="display: flex; align-items: center; justify-content: center;"> | |
| <span style="transform: scale(0.7);margin-right: -5px;">{text_content}</span> | |
| <span style="font-size: 1.8em;margin-left: -10px;font-weight: bold; font-family: Gill Sans;">by UXO Team</span> | |
| <span style="margin-left: 0px; transform: scale(0.85); display: inline-block;">{logo_content}</span> | |
| </div> | |
| """.strip() | |
| badges_text = r""" | |
| <div style="text-align: center; display: flex; justify-content: center; gap: 5px;"> | |
| <a href="https://github.com/bytedance/USO"><img src="https://img.shields.io/static/v1?label=GitHub&message=Code&color=green&logo=github"></a> | |
| <a href="https://bytedance.github.io/USO/"><img alt="Build" src="https://img.shields.io/badge/Project%20Page-USO-yellow"></a> | |
| <a href="https://arxiv.org/abs/2504.02160"><img alt="Build" src="https://img.shields.io/badge/arXiv%20paper-USO-b31b1b.svg"></a> | |
| <a href="https://huggingface.co/bytedance-research/USO"><img src="https://img.shields.io/static/v1?label=%F0%9F%A4%97%20Hugging%20Face&message=Model&color=orange"></a> | |
| </div> | |
| """.strip() | |
| tips = """ | |
| ### What is USO and How to use? | |
| 🎨 USO is a unified style-subject optimized customization model and the latest addition to the UXO family (<a href='https://github.com/bytedance/USO' target='_blank'> USO</a> and <a href='https://github.com/bytedance/UNO' target='_blank'> UNO</a>). | |
| It can freely combine any subjects with any styles in any scenarios. | |
| 💡 We provide step-by-step instructions in our <a href='https://github.com/bytedance/USO#-more-examples' target='_blank'> Github Repo</a>. | |
| Additionally, try the examples provided below the demo to quickly get familiar with USO and inspire your creativity! | |
| ### Updates | |
| 🔥 **2025.09.04** USO now has native support in ComfyUI (see <a href='https://docs.comfy.org/tutorials/flux/flux-1-uso' target='_blank'>ComfyUI's official documentation</a> for details). For more information, please also check out our <a href='https://github.com/bytedance/USO?tab=readme-ov-file#%EF%B8%8F-comfyui-examples' target='_blank'>GitHub Repo</a>. | |
| <details> | |
| <summary style="cursor: pointer; color: #d34c0e; font-weight: 500;">The model is trained on 1024x1024 resolution and supports 3 types of usage. Tips:</summary> | |
| * **Only content img**: support following types: | |
| * Subject/Identity-driven (supports natural prompt, e.g., *A clock on the table.* *The woman near the sea.*, excels in producing **photorealistic portraits**) | |
| * Style edit (layout-preserved): *Transform the image into Ghibli style/Pixel style/Retro comic style/Watercolor painting style...*. | |
| * Style edit (layout-shift): *Ghibli style, the man on the beach.*. | |
| * **Only style img**: Reference input style and generate anything following prompt. Excelling in this and further support multiple style references (in beta). | |
| * **Content img + style img**: Place the content into the desired style. | |
| * Layout-preserved: set prompt to **empty**. | |
| * Layout-shift: using natural prompt.</details>""" | |
| star = """ | |
| ### If USO is helpful, please help to ⭐ our <a href='https://github.com/bytedance/USO' target='_blank'> Github Repo</a>. Thanks a lot!""" | |
| def get_examples(examples_dir: str = "assets/examples") -> list: | |
| examples = Path(examples_dir) | |
| ans = [] | |
| for example in examples.iterdir(): | |
| if not example.is_dir() or len(os.listdir(example)) == 0: | |
| continue | |
| with open(example / "config.json") as f: | |
| example_dict = json.load(f) | |
| example_list = [] | |
| # example_list.append(example_dict["usage"]) # case for | |
| example_list.append(example_dict["prompt"]) # prompt | |
| for key in ["image_ref1", "image_ref2", "image_ref3"]: | |
| if key in example_dict: | |
| example_list.append(str(example / example_dict[key])) | |
| else: | |
| example_list.append(None) | |
| example_list.append(example_dict["seed"]) | |
| ans.append(example_list) | |
| return ans | |
| def create_demo( | |
| model_type: str, | |
| device: str = "cuda" if torch.cuda.is_available() else "cpu", | |
| offload: bool = False, | |
| ): | |
| pipeline = USOPipeline( | |
| model_type, device, offload, only_lora=True, lora_rank=128, hf_download=True | |
| ) | |
| print("USOPipeline loaded successfully") | |
| siglip_processor = SiglipImageProcessor.from_pretrained( | |
| "google/siglip-so400m-patch14-384" | |
| ) | |
| siglip_model = SiglipVisionModel.from_pretrained( | |
| "google/siglip-so400m-patch14-384" | |
| ) | |
| siglip_model.eval() | |
| siglip_model.to(device) | |
| pipeline.model.vision_encoder = siglip_model | |
| pipeline.model.vision_encoder_processor = siglip_processor | |
| print("SigLIP model loaded successfully") | |
| pipeline.gradio_generate = spaces.GPU(duration=120)(pipeline.gradio_generate) | |
| with gr.Blocks() as demo: | |
| gr.Markdown(title) | |
| gr.Markdown(badges_text) | |
| gr.Markdown(tips) | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt = gr.Textbox(label="Prompt", value="A beautiful woman.") | |
| with gr.Row(): | |
| image_prompt1 = gr.Image( | |
| label="Content Reference Img", visible=True, interactive=True, type="pil" | |
| ) | |
| image_prompt2 = gr.Image( | |
| label="Style Reference Img", visible=True, interactive=True, type="pil" | |
| ) | |
| image_prompt3 = gr.Image( | |
| label="Extra Style Reference Img (Beta)", visible=True, interactive=True, type="pil" | |
| ) | |
| with gr.Row(): | |
| with gr.Row(): | |
| width = gr.Slider( | |
| 512, 1536, 1024, step=16, label="Generation Width" | |
| ) | |
| height = gr.Slider( | |
| 512, 1536, 1024, step=16, label="Generation Height" | |
| ) | |
| with gr.Row(): | |
| with gr.Row(): | |
| keep_size = gr.Checkbox( | |
| label="Keep input size", | |
| value=False, | |
| interactive=True | |
| ) | |
| with gr.Column(): | |
| gr.Markdown("Set it to True if you only need style editing or want to keep the layout.") | |
| with gr.Accordion("Advanced Options", open=True): | |
| with gr.Row(): | |
| num_steps = gr.Slider( | |
| 1, 50, 25, step=1, label="Number of steps" | |
| ) | |
| guidance = gr.Slider( | |
| 1.0, 5.0, 4.0, step=0.1, label="Guidance", interactive=True | |
| ) | |
| content_long_size = gr.Slider( | |
| 0, 1024, 512, step=16, label="Content reference size" | |
| ) | |
| seed = gr.Number(-1, label="Seed (-1 for random)") | |
| generate_btn = gr.Button("Generate") | |
| gr.Markdown(star) | |
| with gr.Column(): | |
| output_image = gr.Image(label="Generated Image") | |
| download_btn = gr.File( | |
| label="Download full-resolution", type="filepath", interactive=False | |
| ) | |
| gr.Markdown( | |
| """ | |
| ### ❗️ Important Usage Tips: | |
| - **Input Prompt**: Unless you only need Style Editing ("Transform the style into..."), use natural language ("A dog/man/woman is doing...") instead of instructive descriptions ("Put/Remove/Replace the xx into/with xx"). | |
| - **Input Content Image**: For portrait-preserving generation, USO excels at producing images with high skin detail. A practical guideline: use half-body close-ups when your prompt specifies a half-body subject, and full-body images—especially when the pose changes significantly. | |
| """ | |
| ) | |
| inputs = [ | |
| prompt, | |
| image_prompt1, | |
| image_prompt2, | |
| image_prompt3, | |
| seed, | |
| width, | |
| height, | |
| guidance, | |
| num_steps, | |
| keep_size, | |
| content_long_size, | |
| ] | |
| generate_btn.click( | |
| fn=pipeline.gradio_generate, | |
| inputs=inputs, | |
| outputs=[output_image, download_btn], | |
| ) | |
| example_text = gr.Text("", visible=False, label="Case For:") | |
| examples = get_examples("./assets/gradio_examples") | |
| gr.Examples( | |
| examples=examples, | |
| inputs=[ | |
| prompt, | |
| image_prompt1, | |
| image_prompt2, | |
| image_prompt3, | |
| seed, | |
| ], | |
| # cache_examples='lazy', | |
| outputs=[output_image, download_btn], | |
| fn=pipeline.gradio_generate, | |
| label='row 1-4: identity/subject-driven; row 5-7: style-subject-driven; row 8-9: style-driven; row 10-12: multi-style-driven task; row 13: txt2img', | |
| examples_per_page=15 | |
| ) | |
| with gr.Accordion("Local Gradio Demo for Developers", open=False): | |
| gr.Markdown( | |
| 'Please refer to our GitHub repository to [run the USO gradio demo locally](https://github.com/bytedance/USO?tab=readme-ov-file#-gradio-demo).' | |
| ) | |
| return demo | |
| if __name__ == "__main__": | |
| from typing import Literal | |
| from transformers import HfArgumentParser | |
| class AppArgs: | |
| name: Literal["flux-dev", "flux-dev-fp8", "flux-schnell", "flux-krea-dev"] = "flux-dev" | |
| device: Literal["cuda", "cpu"] = "cuda" if torch.cuda.is_available() else "cpu" | |
| offload: bool = dataclasses.field( | |
| default=False, | |
| metadata={ | |
| "help": "If True, sequantial offload the models(ae, dit, text encoder) to CPU if not used." | |
| }, | |
| ) | |
| port: int = 7860 | |
| parser = HfArgumentParser([AppArgs]) | |
| args_tuple = parser.parse_args_into_dataclasses() # type: tuple[AppArgs] | |
| args = args_tuple[0] | |
| demo = create_demo(args.name, args.device, args.offload) | |
| demo.launch(server_port=args.port, ssr_mode=False) | |