Update classification.py
Browse files- classification.py +19 -19
classification.py
CHANGED
|
@@ -3,18 +3,18 @@ import time
|
|
| 3 |
from tensorflow.keras.preprocessing import image
|
| 4 |
# from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
| 5 |
import tensorflow as tf
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
#
|
| 13 |
-
|
| 14 |
import streamlit as st
|
| 15 |
-
with tf.device('/cpu:0'):
|
| 16 |
# Load the saved model
|
| 17 |
-
|
| 18 |
|
| 19 |
class_names = {0: '1099_Div', 1: '1099_Int', 2: 'Non_Form', 3: 'w_2', 4: 'w_3'}
|
| 20 |
# print(class_names)
|
|
@@ -29,16 +29,16 @@ def predict(pil_img):
|
|
| 29 |
img_array /= 255.0 # Rescale pixel values
|
| 30 |
|
| 31 |
# Predict the class
|
| 32 |
-
with tf.device('/cpu:0'):
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
return predicted_class_name
|
| 43 |
# import numpy as np
|
| 44 |
# import time
|
|
|
|
| 3 |
from tensorflow.keras.preprocessing import image
|
| 4 |
# from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
| 5 |
import tensorflow as tf
|
| 6 |
+
gpus = tf.config.experimental.list_physical_devices('GPU')
|
| 7 |
+
if gpus:
|
| 8 |
+
try:
|
| 9 |
+
for gpu in gpus:
|
| 10 |
+
tf.config.experimental.set_memory_growth(gpu, True)
|
| 11 |
+
except RuntimeError as e:
|
| 12 |
+
# Memory growth must be set before GPUs have been initialized
|
| 13 |
+
print(e)
|
| 14 |
import streamlit as st
|
| 15 |
+
# with tf.device('/cpu:0'):
|
| 16 |
# Load the saved model
|
| 17 |
+
model = tf.keras.models.load_model('best_resnet152_model.h5')
|
| 18 |
|
| 19 |
class_names = {0: '1099_Div', 1: '1099_Int', 2: 'Non_Form', 3: 'w_2', 4: 'w_3'}
|
| 20 |
# print(class_names)
|
|
|
|
| 29 |
img_array /= 255.0 # Rescale pixel values
|
| 30 |
|
| 31 |
# Predict the class
|
| 32 |
+
# with tf.device('/cpu:0'):
|
| 33 |
+
start_time = time.time()
|
| 34 |
+
predictions = model.predict(img_array)
|
| 35 |
+
end_time = time.time()
|
| 36 |
+
predicted_class_index = np.argmax(predictions, axis=1)[0]
|
| 37 |
|
| 38 |
+
# Get the predicted class name
|
| 39 |
+
predicted_class_name = class_names[predicted_class_index]
|
| 40 |
+
print("Predicted class:", predicted_class_name)
|
| 41 |
+
print("Execution time: ", end_time - start_time)
|
| 42 |
return predicted_class_name
|
| 43 |
# import numpy as np
|
| 44 |
# import time
|