Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,12 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
from langchain_core.messages import AIMessage, HumanMessage
|
| 3 |
from langchain_community.document_loaders import WebBaseLoader
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
|
| 6 |
def get_response(user_input):
|
|
@@ -8,18 +14,66 @@ def get_response(user_input):
|
|
| 8 |
|
| 9 |
def get_vector_store_from_url(url):
|
| 10 |
loader = WebBaseLoader(url)
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
# app config
|
| 15 |
st.set_page_config(page_title= "Chat with Websites", page_icon="🤖")
|
| 16 |
st.title("Chat with Websites")
|
| 17 |
|
| 18 |
|
| 19 |
-
|
| 20 |
-
st.session_state.chat_history = [
|
| 21 |
-
AIMessage(content = "Hello, I am a bot. How can I help you"),
|
| 22 |
-
]
|
| 23 |
|
| 24 |
|
| 25 |
#sidebar
|
|
@@ -33,6 +87,14 @@ if (website_url is None or website_url == "") or (openai_apikey is None or opena
|
|
| 33 |
|
| 34 |
|
| 35 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
documents = get_vector_store_from_url(website_url)
|
| 38 |
with st.sidebar:
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
from langchain_core.messages import AIMessage, HumanMessage
|
| 3 |
from langchain_community.document_loaders import WebBaseLoader
|
| 4 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 5 |
+
from langchain_community.vectorstores import Chroma
|
| 6 |
+
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
|
| 7 |
+
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
| 8 |
+
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
|
| 9 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
| 10 |
|
| 11 |
|
| 12 |
def get_response(user_input):
|
|
|
|
| 14 |
|
| 15 |
def get_vector_store_from_url(url):
|
| 16 |
loader = WebBaseLoader(url)
|
| 17 |
+
document = loader.load()
|
| 18 |
+
|
| 19 |
+
# split the document into chunks
|
| 20 |
+
text_splitter = RecursiveCharacterTextSplitter()
|
| 21 |
+
document_chunks = text_splitter.split_documents(document)
|
| 22 |
+
|
| 23 |
+
# create a vectorstore from the chunks
|
| 24 |
+
vector_store = Chroma.from_documents(document_chunks, OpenAIEmbeddings())
|
| 25 |
+
|
| 26 |
+
return vector_store
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def get_context_retriever_chain(vector_store):
|
| 30 |
+
llm = ChatOpenAI()
|
| 31 |
+
|
| 32 |
+
retriever = vector_store.as_retriever()
|
| 33 |
+
|
| 34 |
+
prompt = ChatPromptTemplate.from_messages([
|
| 35 |
+
MessagesPlaceholder(variable_name="chat_history"),
|
| 36 |
+
("user", "{input}"),
|
| 37 |
+
("user", "Given the above conversation, generate a search query to look up in order to get information relevant to the conversation")
|
| 38 |
+
])
|
| 39 |
+
|
| 40 |
+
retriever_chain = create_history_aware_retriever(llm, retriever, prompt)
|
| 41 |
+
|
| 42 |
+
return retriever_chain
|
| 43 |
+
|
| 44 |
|
| 45 |
+
def get_conversational_rag_chain(retriever_chain):
|
| 46 |
+
|
| 47 |
+
llm = ChatOpenAI()
|
| 48 |
+
|
| 49 |
+
prompt = ChatPromptTemplate.from_messages([
|
| 50 |
+
("system", "Answer the user's questions based on the below context:\n\n{context}"),
|
| 51 |
+
MessagesPlaceholder(variable_name="chat_history"),
|
| 52 |
+
("user", "{input}"),
|
| 53 |
+
])
|
| 54 |
+
|
| 55 |
+
stuff_documents_chain = create_stuff_documents_chain(llm,prompt)
|
| 56 |
+
|
| 57 |
+
return create_retrieval_chain(retriever_chain, stuff_documents_chain)
|
| 58 |
+
|
| 59 |
+
def get_response(user_input):
|
| 60 |
+
retriever_chain = get_context_retriever_chain(st.session_state.vector_store)
|
| 61 |
+
conversation_rag_chain = get_conversational_rag_chain(retriever_chain)
|
| 62 |
+
|
| 63 |
+
response = conversation_rag_chain.invoke({
|
| 64 |
+
"chat_history": st.session_state.chat_history,
|
| 65 |
+
"input": user_query
|
| 66 |
+
})
|
| 67 |
+
|
| 68 |
+
return response['answer']
|
| 69 |
+
|
| 70 |
+
|
| 71 |
# app config
|
| 72 |
st.set_page_config(page_title= "Chat with Websites", page_icon="🤖")
|
| 73 |
st.title("Chat with Websites")
|
| 74 |
|
| 75 |
|
| 76 |
+
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
|
| 79 |
#sidebar
|
|
|
|
| 87 |
|
| 88 |
|
| 89 |
else:
|
| 90 |
+
|
| 91 |
+
if "chat_history" not in st.session_state:
|
| 92 |
+
st.session_state.chat_history = [
|
| 93 |
+
AIMessage(content = "Hello, I am a bot. How can I help you"),
|
| 94 |
+
]
|
| 95 |
+
|
| 96 |
+
if "vector_store" not in st.session_state:
|
| 97 |
+
st.session_state.vector_store = get_vectorstore_from_url(website_url)
|
| 98 |
|
| 99 |
documents = get_vector_store_from_url(website_url)
|
| 100 |
with st.sidebar:
|