Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -23,14 +23,16 @@ import torch
|
|
| 23 |
|
| 24 |
|
| 25 |
def get_vector_store_from_url(url):
|
| 26 |
-
model_name = "BAAI/bge-large-en"
|
| 27 |
-
model_kwargs = {'device': 'cpu'}
|
| 28 |
-
encode_kwargs = {'normalize_embeddings': False}
|
| 29 |
-
embeddings = HuggingFaceBgeEmbeddings(
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
)
|
|
|
|
|
|
|
| 34 |
|
| 35 |
loader = WebBaseLoader(url)
|
| 36 |
document = loader.load()
|
|
@@ -114,17 +116,23 @@ def get_response(user_input):
|
|
| 114 |
# lib="avx2", # for CPU
|
| 115 |
# )
|
| 116 |
|
| 117 |
-
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
| 118 |
-
# llm = HuggingFaceHub(
|
| 119 |
-
# repo_id=llm_model,
|
| 120 |
-
# model_kwargs={"temperature": 0.3, "max_new_tokens": 250, "top_k": 3}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
# )
|
| 122 |
|
| 123 |
-
llm =
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
device_map='auto'
|
| 128 |
)
|
| 129 |
retriever_chain = get_context_retriever_chain(st.session_state.vector_store,llm)
|
| 130 |
conversation_rag_chain = get_conversational_rag_chain(retriever_chain,llm)
|
|
|
|
| 23 |
|
| 24 |
|
| 25 |
def get_vector_store_from_url(url):
|
| 26 |
+
# model_name = "BAAI/bge-large-en"
|
| 27 |
+
# model_kwargs = {'device': 'cpu'}
|
| 28 |
+
# encode_kwargs = {'normalize_embeddings': False}
|
| 29 |
+
# embeddings = HuggingFaceBgeEmbeddings(
|
| 30 |
+
# model_name=model_name,
|
| 31 |
+
# model_kwargs=model_kwargs,
|
| 32 |
+
# encode_kwargs=encode_kwargs
|
| 33 |
+
# )
|
| 34 |
+
embeddings = HuggingFaceEmbeddings(model_name='thenlper/gte-large',
|
| 35 |
+
model_kwargs={'device': 'cpu'})
|
| 36 |
|
| 37 |
loader = WebBaseLoader(url)
|
| 38 |
document = loader.load()
|
|
|
|
| 116 |
# lib="avx2", # for CPU
|
| 117 |
# )
|
| 118 |
|
| 119 |
+
# model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
| 120 |
+
# # llm = HuggingFaceHub(
|
| 121 |
+
# # repo_id=llm_model,
|
| 122 |
+
# # model_kwargs={"temperature": 0.3, "max_new_tokens": 250, "top_k": 3}
|
| 123 |
+
# # )
|
| 124 |
+
|
| 125 |
+
# llm = transformers.AutoModelForCausalLM.from_pretrained(
|
| 126 |
+
# model_name,
|
| 127 |
+
# trust_remote_code=True,
|
| 128 |
+
# torch_dtype=torch.bfloat16,
|
| 129 |
+
# device_map='auto'
|
| 130 |
# )
|
| 131 |
|
| 132 |
+
llm = HuggingFacePipeline.from_model_id(
|
| 133 |
+
model_id="google/flan-t5-base",
|
| 134 |
+
task="text2text-generation",
|
| 135 |
+
# model_kwargs={"temperature": 0.2},
|
|
|
|
| 136 |
)
|
| 137 |
retriever_chain = get_context_retriever_chain(st.session_state.vector_store,llm)
|
| 138 |
conversation_rag_chain = get_conversational_rag_chain(retriever_chain,llm)
|