Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,79 +2,57 @@ import os
|
|
| 2 |
import shlex
|
| 3 |
import spaces
|
| 4 |
import subprocess
|
| 5 |
-
import argparse
|
| 6 |
import uuid
|
| 7 |
-
import
|
|
|
|
|
|
|
| 8 |
import numpy as np
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# --------------------------------------------------------------------------
|
| 11 |
-
#
|
| 12 |
-
# Esta secci贸n DEBE ejecutarse en su totalidad ANTES de importar torch o gradio.
|
| 13 |
# --------------------------------------------------------------------------
|
| 14 |
-
|
| 15 |
@spaces.GPU(duration=120)
|
| 16 |
def setup_environment():
|
| 17 |
-
"""
|
| 18 |
-
Prepara todo el entorno necesario, instalando CUDA y compilando las extensiones.
|
| 19 |
-
Esta funci贸n se ejecuta una vez al inicio del Space.
|
| 20 |
-
"""
|
| 21 |
print("--- INICIANDO CONFIGURACI脫N DEL ENTORNO ---")
|
| 22 |
-
|
| 23 |
-
# 1. Instalar CUDA Toolkit
|
| 24 |
if not os.path.exists("/usr/local/cuda"):
|
| 25 |
print("Instalando CUDA Toolkit...")
|
| 26 |
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_550.54.14_linux.run"
|
| 27 |
CUDA_TOOLKIT_FILE = f"/tmp/{os.path.basename(CUDA_TOOLKIT_URL)}"
|
| 28 |
-
|
| 29 |
subprocess.run(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE], check=True)
|
| 30 |
subprocess.run(["chmod", "+x", CUDA_TOOLKIT_FILE], check=True)
|
| 31 |
-
# Se a帽ade --override para evitar problemas en algunos entornos de HF Spaces
|
| 32 |
subprocess.run([CUDA_TOOLKIT_FILE, "--silent", "--toolkit", "--override"], check=True)
|
| 33 |
-
print("CUDA Toolkit instalado.")
|
| 34 |
else:
|
| 35 |
print("CUDA Toolkit ya est谩 instalado.")
|
| 36 |
-
|
| 37 |
-
# 2. Configurar variables de entorno
|
| 38 |
os.environ["CUDA_HOME"] = "/usr/local/cuda"
|
| 39 |
os.environ["PATH"] = f"{os.environ['CUDA_HOME']}/bin:{os.environ['PATH']}"
|
| 40 |
-
# La ruta correcta en la mayor铆a de las distribuciones de Linux es lib64
|
| 41 |
os.environ["LD_LIBRARY_PATH"] = f"{os.environ['CUDA_HOME']}/lib64:{os.environ.get('LD_LIBRARY_PATH', '')}"
|
| 42 |
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
|
| 43 |
print("Variables de entorno de CUDA configuradas.")
|
| 44 |
-
|
| 45 |
-
# 3. Verificar NVCC
|
| 46 |
-
print("Verificando versi贸n de NVCC:")
|
| 47 |
os.system('nvcc -V')
|
| 48 |
|
| 49 |
-
# 4. Compilar extensiones C++/CUDA
|
| 50 |
print("Compilando extensi贸n de renderizador diferenciable...")
|
| 51 |
try:
|
| 52 |
-
subprocess.run(
|
| 53 |
-
"cd /home/user/app/step1x3d_texture/differentiable_renderer/ && python setup.py install",
|
| 54 |
-
shell=True, check=True, capture_output=True, text=True
|
| 55 |
-
)
|
| 56 |
-
print("Renderizador diferenciable compilado.")
|
| 57 |
except subprocess.CalledProcessError as e:
|
| 58 |
-
print(f"ERROR al compilar el renderizador diferenciable
|
| 59 |
raise RuntimeError("Fallo cr铆tico en la compilaci贸n del renderizador.")
|
| 60 |
|
| 61 |
print("Instalando rasterizador personalizado...")
|
| 62 |
try:
|
| 63 |
subprocess.run(shlex.split("pip install custom_rasterizer-0.1-cp310-cp310-linux_x86_64.whl"), check=True)
|
| 64 |
-
print("Rasterizador personalizado instalado.")
|
| 65 |
except Exception as e:
|
| 66 |
print(f"ERROR al instalar el rasterizador personalizado: {e}")
|
| 67 |
raise RuntimeError("Fallo cr铆tico en la instalaci贸n del rasterizador.")
|
| 68 |
-
|
| 69 |
print("--- CONFIGURACI脫N DEL ENTORNO FINALIZADA ---")
|
| 70 |
|
| 71 |
-
# Ejecutar la configuraci贸n del entorno antes de cualquier otra cosa
|
| 72 |
setup_environment()
|
| 73 |
|
| 74 |
-
|
| 75 |
# --------------------------------------------------------------------------
|
| 76 |
-
#
|
| 77 |
-
# Todas las importaciones que dependen de CUDA se hacen AHORA.
|
| 78 |
# --------------------------------------------------------------------------
|
| 79 |
import torch
|
| 80 |
import trimesh
|
|
@@ -82,9 +60,6 @@ import gradio as gr
|
|
| 82 |
from step1x3d_texture.pipelines.step1x_3d_texture_synthesis_pipeline import Step1X3DTexturePipeline
|
| 83 |
from step1x3d_geometry.models.pipelines.pipeline_utils import reduce_face, remove_degenerate_face
|
| 84 |
|
| 85 |
-
# --------------------------------------------------------------------------
|
| 86 |
-
# 3. CONFIGURACI脫N Y CARGA DEL MODELO DE TEXTURA
|
| 87 |
-
# --------------------------------------------------------------------------
|
| 88 |
parser = argparse.ArgumentParser()
|
| 89 |
parser.add_argument("--texture_model", type=str, default="Step1X-3D-Texture")
|
| 90 |
parser.add_argument("--cache_dir", type=str, default="cache")
|
|
@@ -94,7 +69,6 @@ os.makedirs(args.cache_dir, exist_ok=True)
|
|
| 94 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 95 |
MAX_SEED = np.iinfo(np.int32).max
|
| 96 |
|
| 97 |
-
print(f"Dispositivo detectado: {device}")
|
| 98 |
if not torch.cuda.is_available():
|
| 99 |
raise RuntimeError("CUDA no est谩 disponible para PyTorch. La aplicaci贸n no puede continuar.")
|
| 100 |
|
|
@@ -102,30 +76,32 @@ print(f"Cargando modelo de textura: {args.texture_model}...")
|
|
| 102 |
texture_model = Step1X3DTexturePipeline.from_pretrained("stepfun-ai/Step1X-3D", subfolder=args.texture_model)
|
| 103 |
print("Modelo de textura cargado y listo.")
|
| 104 |
|
| 105 |
-
|
| 106 |
# --------------------------------------------------------------------------
|
| 107 |
-
#
|
| 108 |
# --------------------------------------------------------------------------
|
| 109 |
|
| 110 |
def get_random_seed(randomize_seed, seed):
|
| 111 |
-
"""
|
| 112 |
if randomize_seed:
|
| 113 |
-
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
@spaces.GPU(duration=180)
|
| 117 |
-
def
|
| 118 |
input_image_path,
|
| 119 |
input_mesh_path,
|
| 120 |
guidance_scale,
|
| 121 |
inference_steps,
|
| 122 |
-
seed,
|
| 123 |
-
randomize_seed,
|
| 124 |
reference_conditioning_scale,
|
| 125 |
progress=gr.Progress(track_tqdm=True)
|
| 126 |
):
|
| 127 |
"""
|
| 128 |
-
Funci贸n principal que genera la textura
|
| 129 |
"""
|
| 130 |
if input_image_path is None:
|
| 131 |
raise gr.Error("Por favor, sube una imagen de referencia para empezar.")
|
|
@@ -134,13 +110,14 @@ def generate_texture_for_user_mesh(
|
|
| 134 |
|
| 135 |
print("Iniciando generaci贸n de textura para el modelo del usuario...")
|
| 136 |
|
| 137 |
-
|
| 138 |
-
|
| 139 |
texture_model.config.guidance_scale = float(guidance_scale)
|
| 140 |
texture_model.config.num_inference_steps = int(inference_steps)
|
| 141 |
texture_model.config.reference_conditioning_scale = float(reference_conditioning_scale)
|
| 142 |
|
| 143 |
-
|
|
|
|
|
|
|
| 144 |
|
| 145 |
print(f"Cargando malla desde: {input_mesh_path}")
|
| 146 |
try:
|
|
@@ -157,7 +134,7 @@ def generate_texture_for_user_mesh(
|
|
| 157 |
image=input_image_path,
|
| 158 |
mesh=user_mesh,
|
| 159 |
remove_bg=True,
|
| 160 |
-
seed=
|
| 161 |
)
|
| 162 |
|
| 163 |
save_name = str(uuid.uuid4())
|
|
@@ -169,9 +146,8 @@ def generate_texture_for_user_mesh(
|
|
| 169 |
|
| 170 |
return textured_save_path
|
| 171 |
|
| 172 |
-
|
| 173 |
# --------------------------------------------------------------------------
|
| 174 |
-
#
|
| 175 |
# --------------------------------------------------------------------------
|
| 176 |
|
| 177 |
with gr.Blocks(title="Step1X-3D Texture Generator") as demo:
|
|
@@ -196,19 +172,23 @@ with gr.Blocks(title="Step1X-3D Texture Generator") as demo:
|
|
| 196 |
with gr.Column(scale=3):
|
| 197 |
output_model = gr.Model3D(label="Resultado: Modelo Texturizado", height=600, clear_color=[0.0, 0.0, 0.0, 0.0])
|
| 198 |
|
|
|
|
|
|
|
| 199 |
btn_generate.click(
|
| 200 |
-
fn=
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
inputs=[
|
| 202 |
input_image,
|
| 203 |
input_mesh,
|
| 204 |
guidance_scale,
|
| 205 |
inference_steps,
|
| 206 |
-
seed,
|
| 207 |
-
randomize_seed,
|
| 208 |
reference_conditioning_scale,
|
| 209 |
],
|
| 210 |
outputs=[output_model]
|
| 211 |
)
|
| 212 |
|
| 213 |
-
# Lanza la aplicaci贸n (share=True no es necesario en HF Spaces)
|
| 214 |
demo.launch(ssr_mode=False)
|
|
|
|
| 2 |
import shlex
|
| 3 |
import spaces
|
| 4 |
import subprocess
|
|
|
|
| 5 |
import uuid
|
| 6 |
+
import torch
|
| 7 |
+
import trimesh
|
| 8 |
+
import argparse
|
| 9 |
import numpy as np
|
| 10 |
+
import gradio as gr
|
| 11 |
+
import random
|
| 12 |
|
| 13 |
# --------------------------------------------------------------------------
|
| 14 |
+
# 1. INSTALACI脫N DEL ENTORNO Y DEPENDENCIAS (Sin cambios)
|
|
|
|
| 15 |
# --------------------------------------------------------------------------
|
|
|
|
| 16 |
@spaces.GPU(duration=120)
|
| 17 |
def setup_environment():
|
| 18 |
+
"""Prepara el entorno, instalando CUDA y compilando extensiones."""
|
|
|
|
|
|
|
|
|
|
| 19 |
print("--- INICIANDO CONFIGURACI脫N DEL ENTORNO ---")
|
|
|
|
|
|
|
| 20 |
if not os.path.exists("/usr/local/cuda"):
|
| 21 |
print("Instalando CUDA Toolkit...")
|
| 22 |
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_550.54.14_linux.run"
|
| 23 |
CUDA_TOOLKIT_FILE = f"/tmp/{os.path.basename(CUDA_TOOLKIT_URL)}"
|
|
|
|
| 24 |
subprocess.run(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE], check=True)
|
| 25 |
subprocess.run(["chmod", "+x", CUDA_TOOLKIT_FILE], check=True)
|
|
|
|
| 26 |
subprocess.run([CUDA_TOOLKIT_FILE, "--silent", "--toolkit", "--override"], check=True)
|
|
|
|
| 27 |
else:
|
| 28 |
print("CUDA Toolkit ya est谩 instalado.")
|
| 29 |
+
|
|
|
|
| 30 |
os.environ["CUDA_HOME"] = "/usr/local/cuda"
|
| 31 |
os.environ["PATH"] = f"{os.environ['CUDA_HOME']}/bin:{os.environ['PATH']}"
|
|
|
|
| 32 |
os.environ["LD_LIBRARY_PATH"] = f"{os.environ['CUDA_HOME']}/lib64:{os.environ.get('LD_LIBRARY_PATH', '')}"
|
| 33 |
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
|
| 34 |
print("Variables de entorno de CUDA configuradas.")
|
|
|
|
|
|
|
|
|
|
| 35 |
os.system('nvcc -V')
|
| 36 |
|
|
|
|
| 37 |
print("Compilando extensi贸n de renderizador diferenciable...")
|
| 38 |
try:
|
| 39 |
+
subprocess.run("cd /home/user/app/step1x3d_texture/differentiable_renderer/ && python setup.py install", shell=True, check=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
except subprocess.CalledProcessError as e:
|
| 41 |
+
print(f"ERROR al compilar el renderizador diferenciable: {e}")
|
| 42 |
raise RuntimeError("Fallo cr铆tico en la compilaci贸n del renderizador.")
|
| 43 |
|
| 44 |
print("Instalando rasterizador personalizado...")
|
| 45 |
try:
|
| 46 |
subprocess.run(shlex.split("pip install custom_rasterizer-0.1-cp310-cp310-linux_x86_64.whl"), check=True)
|
|
|
|
| 47 |
except Exception as e:
|
| 48 |
print(f"ERROR al instalar el rasterizador personalizado: {e}")
|
| 49 |
raise RuntimeError("Fallo cr铆tico en la instalaci贸n del rasterizador.")
|
|
|
|
| 50 |
print("--- CONFIGURACI脫N DEL ENTORNO FINALIZADA ---")
|
| 51 |
|
|
|
|
| 52 |
setup_environment()
|
| 53 |
|
|
|
|
| 54 |
# --------------------------------------------------------------------------
|
| 55 |
+
# 2. IMPORTACIONES Y CARGA DE MODELOS (Despu茅s de la configuraci贸n)
|
|
|
|
| 56 |
# --------------------------------------------------------------------------
|
| 57 |
import torch
|
| 58 |
import trimesh
|
|
|
|
| 60 |
from step1x3d_texture.pipelines.step1x_3d_texture_synthesis_pipeline import Step1X3DTexturePipeline
|
| 61 |
from step1x3d_geometry.models.pipelines.pipeline_utils import reduce_face, remove_degenerate_face
|
| 62 |
|
|
|
|
|
|
|
|
|
|
| 63 |
parser = argparse.ArgumentParser()
|
| 64 |
parser.add_argument("--texture_model", type=str, default="Step1X-3D-Texture")
|
| 65 |
parser.add_argument("--cache_dir", type=str, default="cache")
|
|
|
|
| 69 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 70 |
MAX_SEED = np.iinfo(np.int32).max
|
| 71 |
|
|
|
|
| 72 |
if not torch.cuda.is_available():
|
| 73 |
raise RuntimeError("CUDA no est谩 disponible para PyTorch. La aplicaci贸n no puede continuar.")
|
| 74 |
|
|
|
|
| 76 |
texture_model = Step1X3DTexturePipeline.from_pretrained("stepfun-ai/Step1X-3D", subfolder=args.texture_model)
|
| 77 |
print("Modelo de textura cargado y listo.")
|
| 78 |
|
|
|
|
| 79 |
# --------------------------------------------------------------------------
|
| 80 |
+
# 3. FUNCIONES DE L脫GICA
|
| 81 |
# --------------------------------------------------------------------------
|
| 82 |
|
| 83 |
def get_random_seed(randomize_seed, seed):
|
| 84 |
+
"""Devuelve una semilla aleatoria si la casilla est谩 marcada, de lo contrario devuelve la semilla del slider."""
|
| 85 |
if randomize_seed:
|
| 86 |
+
new_seed = random.randint(0, MAX_SEED)
|
| 87 |
+
print(f"Generando semilla aleatoria: {new_seed}")
|
| 88 |
+
return new_seed
|
| 89 |
+
else:
|
| 90 |
+
print(f"Usando semilla fija: {int(seed)}")
|
| 91 |
+
return int(seed)
|
| 92 |
|
| 93 |
@spaces.GPU(duration=180)
|
| 94 |
+
def generate_texture(
|
| 95 |
input_image_path,
|
| 96 |
input_mesh_path,
|
| 97 |
guidance_scale,
|
| 98 |
inference_steps,
|
| 99 |
+
seed, # Ahora este valor es el definitivo (aleatorio o fijo)
|
|
|
|
| 100 |
reference_conditioning_scale,
|
| 101 |
progress=gr.Progress(track_tqdm=True)
|
| 102 |
):
|
| 103 |
"""
|
| 104 |
+
Funci贸n principal que genera la textura. Ya no necesita el par谩metro 'randomize_seed'.
|
| 105 |
"""
|
| 106 |
if input_image_path is None:
|
| 107 |
raise gr.Error("Por favor, sube una imagen de referencia para empezar.")
|
|
|
|
| 110 |
|
| 111 |
print("Iniciando generaci贸n de textura para el modelo del usuario...")
|
| 112 |
|
| 113 |
+
# Actualizar la configuraci贸n del pipeline con los valores de la UI
|
|
|
|
| 114 |
texture_model.config.guidance_scale = float(guidance_scale)
|
| 115 |
texture_model.config.num_inference_steps = int(inference_steps)
|
| 116 |
texture_model.config.reference_conditioning_scale = float(reference_conditioning_scale)
|
| 117 |
|
| 118 |
+
# La semilla ya viene procesada
|
| 119 |
+
final_seed = int(seed)
|
| 120 |
+
print(f"Par谩metros: Pasos={inference_steps}, Escala Gu铆a={guidance_scale}, Semilla Final={final_seed}")
|
| 121 |
|
| 122 |
print(f"Cargando malla desde: {input_mesh_path}")
|
| 123 |
try:
|
|
|
|
| 134 |
image=input_image_path,
|
| 135 |
mesh=user_mesh,
|
| 136 |
remove_bg=True,
|
| 137 |
+
seed=final_seed
|
| 138 |
)
|
| 139 |
|
| 140 |
save_name = str(uuid.uuid4())
|
|
|
|
| 146 |
|
| 147 |
return textured_save_path
|
| 148 |
|
|
|
|
| 149 |
# --------------------------------------------------------------------------
|
| 150 |
+
# 4. INTERFAZ DE USUARIO CON GRADIO
|
| 151 |
# --------------------------------------------------------------------------
|
| 152 |
|
| 153 |
with gr.Blocks(title="Step1X-3D Texture Generator") as demo:
|
|
|
|
| 172 |
with gr.Column(scale=3):
|
| 173 |
output_model = gr.Model3D(label="Resultado: Modelo Texturizado", height=600, clear_color=[0.0, 0.0, 0.0, 0.0])
|
| 174 |
|
| 175 |
+
# --- L贸gica de la interfaz ---
|
| 176 |
+
|
| 177 |
btn_generate.click(
|
| 178 |
+
fn=get_random_seed,
|
| 179 |
+
inputs=[randomize_seed, seed],
|
| 180 |
+
outputs=[seed]
|
| 181 |
+
).then(
|
| 182 |
+
fn=generate_texture,
|
| 183 |
inputs=[
|
| 184 |
input_image,
|
| 185 |
input_mesh,
|
| 186 |
guidance_scale,
|
| 187 |
inference_steps,
|
| 188 |
+
seed,
|
|
|
|
| 189 |
reference_conditioning_scale,
|
| 190 |
],
|
| 191 |
outputs=[output_model]
|
| 192 |
)
|
| 193 |
|
|
|
|
| 194 |
demo.launch(ssr_mode=False)
|