Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import spaces | |
| import os | |
| import shutil | |
| os.environ['SPCONV_ALGO'] = 'native' | |
| from typing import * | |
| import torch | |
| import numpy as np | |
| import imageio | |
| from easydict import EasyDict as edict | |
| from PIL import Image | |
| from trellis.pipelines import TrellisImageTo3DPipeline | |
| from trellis.representations import Gaussian, MeshExtractResult | |
| from trellis.utils import render_utils, postprocessing_utils | |
| import logging | |
| logging.basicConfig(level=logging.INFO, format='%(asctime)s - HF_SPACE_MULTIIMG - %(levelname)s - %(message)s') | |
| MAX_SEED = np.iinfo(np.int32).max | |
| TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') | |
| os.makedirs(TMP_DIR, exist_ok=True) | |
| def start_session(req: gr.Request): | |
| session_hash = str(req.session_hash) | |
| user_dir = os.path.join(TMP_DIR, session_hash) | |
| logging.info(f"START SESSION: Creando directorio para la sesión {session_hash} en {user_dir}") | |
| os.makedirs(user_dir, exist_ok=True) | |
| def end_session(req: gr.Request): | |
| session_hash = str(req.session_hash) | |
| user_dir = os.path.join(TMP_DIR, session_hash) | |
| logging.info(f"END SESSION: Intentando eliminar el directorio de la sesión {session_hash} en {user_dir}") | |
| if os.path.exists(user_dir): | |
| try: | |
| shutil.rmtree(user_dir) | |
| logging.info(f"Directorio de la sesión {session_hash} eliminado correctamente.") | |
| except Exception as e: | |
| logging.error(f"Error al eliminar el directorio de la sesión {session_hash}: {e}") | |
| else: | |
| logging.warning(f"El directorio de la sesión {session_hash} no fue encontrado al intentar eliminarlo. Es posible que ya haya sido limpiado.") | |
| def preprocess_images(images: List[Tuple[Image.Image, str]], req: gr.Request) -> List[Image.Image]: | |
| session_hash = str(req.session_hash) | |
| logging.info(f"[{session_hash}] Preprocesando {len(images)} imágenes.") | |
| images = [image[0] for image in images] | |
| processed_images = [pipeline.preprocess_image(image) for image in images] | |
| logging.info(f"[{session_hash}] Preprocesamiento completado.") | |
| return processed_images | |
| def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict: | |
| return { | |
| 'gaussian': { | |
| **gs.init_params, | |
| '_xyz': gs._xyz.cpu().numpy(), | |
| '_features_dc': gs._features_dc.cpu().numpy(), | |
| '_scaling': gs._scaling.cpu().numpy(), | |
| '_rotation': gs._rotation.cpu().numpy(), | |
| '_opacity': gs._opacity.cpu().numpy(), | |
| }, | |
| 'mesh': { | |
| 'vertices': mesh.vertices.cpu().numpy(), | |
| 'faces': mesh.faces.cpu().numpy(), | |
| }, | |
| } | |
| def unpack_state(state: dict) -> Tuple[Gaussian, edict]: | |
| gs = Gaussian( | |
| aabb=state['gaussian']['aabb'], | |
| sh_degree=state['gaussian']['sh_degree'], | |
| mininum_kernel_size=state['gaussian']['mininum_kernel_size'], | |
| scaling_bias=state['gaussian']['scaling_bias'], | |
| opacity_bias=state['gaussian']['opacity_bias'], | |
| scaling_activation=state['gaussian']['scaling_activation'], | |
| ) | |
| gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda') | |
| gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda') | |
| gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda') | |
| gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda') | |
| gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda') | |
| mesh = edict( | |
| vertices=torch.tensor(state['mesh']['vertices'], device='cuda'), | |
| faces=torch.tensor(state['mesh']['faces'], device='cuda'), | |
| ) | |
| return gs, mesh | |
| def get_seed(randomize_seed: bool, seed: int) -> int: | |
| new_seed = np.random.randint(0, MAX_SEED) if randomize_seed else seed | |
| logging.info(f"Usando seed: {new_seed}") | |
| return new_seed | |
| def image_to_3d( | |
| multiimages: List[Tuple[Image.Image, str]], | |
| seed: int, | |
| ss_guidance_strength: float, | |
| ss_sampling_steps: int, | |
| slat_guidance_strength: float, | |
| slat_sampling_steps: int, | |
| multiimage_algo: Literal["multidiffusion", "stochastic"], | |
| req: gr.Request, | |
| ) -> Tuple[dict, str]: | |
| session_hash = str(req.session_hash) | |
| logging.info(f"[{session_hash}] Iniciando image_to_3d con {len(multiimages)} imágenes.") | |
| user_dir = os.path.join(TMP_DIR, session_hash) | |
| outputs = pipeline.run_multi_image( | |
| [image[0] for image in multiimages], | |
| seed=seed, | |
| formats=["gaussian", "mesh"], | |
| preprocess_image=False, | |
| sparse_structure_sampler_params={ | |
| "steps": ss_sampling_steps, | |
| "cfg_strength": ss_guidance_strength, | |
| }, | |
| slat_sampler_params={ | |
| "steps": slat_sampling_steps, | |
| "cfg_strength": slat_guidance_strength, | |
| }, | |
| mode=multiimage_algo, | |
| ) | |
| logging.info(f"[{session_hash}] Generación del modelo completada. Renderizando video...") | |
| video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color'] | |
| video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal'] | |
| video = video | |
| video_path = os.path.join(user_dir, 'sample.mp4') | |
| imageio.mimsave(video_path, video, fps=15) | |
| state = pack_state(outputs['gaussian'][0], outputs['mesh'][0]) | |
| torch.cuda.empty_cache() | |
| logging.info(f"[{session_hash}] Video renderizado y estado empaquetado. Devolviendo: {video_path}") | |
| return state, video_path | |
| def extract_glb( | |
| state: dict, | |
| mesh_simplify: float, | |
| texture_size: int, | |
| req: gr.Request, | |
| ) -> Tuple[str, str]: | |
| session_hash = str(req.session_hash) | |
| logging.info(f"[{session_hash}] Iniciando extract_glb...") | |
| user_dir = os.path.join(TMP_DIR, session_hash) | |
| gs, mesh = unpack_state(state) | |
| glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) | |
| glb_path = os.path.join(user_dir, 'sample.glb') | |
| glb.export(glb_path) | |
| torch.cuda.empty_cache() | |
| logging.info(f"[{session_hash}] GLB extraído. Devolviendo: {glb_path}") | |
| return glb_path, glb_path | |
| with gr.Blocks(delete_cache=(600, 600)) as demo: | |
| gr.Markdown(""" | |
| # UTPL - Conversión de Multiples Imágenes a objetos 3D usando IA | |
| ### Tesis: *"Objetos tridimensionales creados por IA: Innovación en entornos virtuales"* | |
| **Autor:** Carlos Vargas | |
| **Base técnica:** Adaptación de [TRELLIS](https://trellis3d.github.io/) (herramienta de código abierto para generación 3D) | |
| **Propósito educativo:** Demostraciones académicas e Investigación en modelado 3D automático | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Tabs() as input_tabs: | |
| with gr.Tab(label="Multiple Images", id=1) as multiimage_input_tab: | |
| multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3) | |
| with gr.Accordion(label="Generation Settings", open=False): | |
| seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1) | |
| randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
| gr.Markdown("Stage 1: Sparse Structure Generation") | |
| with gr.Row(): | |
| ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) | |
| ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) | |
| gr.Markdown("Stage 2: Structured Latent Generation") | |
| with gr.Row(): | |
| slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1) | |
| slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) | |
| multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic") | |
| generate_btn = gr.Button("Generate") | |
| with gr.Accordion(label="GLB Extraction Settings", open=False): | |
| mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01) | |
| texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512) | |
| extract_glb_btn = gr.Button("Extract GLB", interactive=False) | |
| with gr.Column(): | |
| video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300) | |
| model_output = gr.Model3D(label="Extracted GLB", height=300) | |
| download_glb = gr.DownloadButton(label="Download GLB", interactive=False) | |
| output_buf = gr.State() | |
| demo.load(start_session, inputs=None, outputs=None, api_name="start_session") | |
| demo.unload(end_session) | |
| multiimage_prompt.upload( | |
| preprocess_images, | |
| inputs=[multiimage_prompt], | |
| outputs=[multiimage_prompt], | |
| api_name="preprocess_images" | |
| ) | |
| generate_btn.click( | |
| get_seed, | |
| inputs=[randomize_seed, seed], | |
| outputs=[seed], | |
| api_name="get_seed" | |
| ).then( | |
| image_to_3d, | |
| inputs=[multiimage_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo], | |
| outputs=[output_buf, video_output], | |
| api_name="image_to_3d" | |
| ).then( | |
| lambda: gr.Button(interactive=True), | |
| outputs=[extract_glb_btn], | |
| ) | |
| video_output.clear( | |
| lambda: gr.Button(interactive=False), | |
| outputs=[extract_glb_btn], | |
| ) | |
| extract_glb_btn.click( | |
| extract_glb, | |
| inputs=[output_buf, mesh_simplify, texture_size], | |
| outputs=[model_output, download_glb], | |
| api_name="extract_glb" | |
| ).then( | |
| lambda: gr.Button(interactive=True), | |
| outputs=[download_glb], | |
| ) | |
| model_output.clear( | |
| lambda: gr.Button(interactive=False), | |
| outputs=[download_glb], | |
| ) | |
| # Lanzar la aplicación Gradio | |
| if __name__ == "__main__": | |
| pipeline = TrellisImageTo3DPipeline.from_pretrained("cavargas10/TRELLIS") | |
| pipeline.cuda() | |
| try: | |
| pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Precargar rembg | |
| except: | |
| pass | |
| demo.launch(show_error=True) |