Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -31,30 +31,7 @@ def end_session(req: gr.Request):
|
|
| 31 |
shutil.rmtree(user_dir)
|
| 32 |
|
| 33 |
|
| 34 |
-
def preprocess_image(image: Image.Image) -> Image.Image:
|
| 35 |
-
"""
|
| 36 |
-
Preprocess the input image.
|
| 37 |
-
|
| 38 |
-
Args:
|
| 39 |
-
image (Image.Image): The input image.
|
| 40 |
-
|
| 41 |
-
Returns:
|
| 42 |
-
Image.Image: The preprocessed image.
|
| 43 |
-
"""
|
| 44 |
-
processed_image = pipeline.preprocess_image(image)
|
| 45 |
-
return processed_image
|
| 46 |
-
|
| 47 |
-
|
| 48 |
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
|
| 49 |
-
"""
|
| 50 |
-
Preprocess a list of input images.
|
| 51 |
-
|
| 52 |
-
Args:
|
| 53 |
-
images (List[Tuple[Image.Image, str]]): The input images.
|
| 54 |
-
|
| 55 |
-
Returns:
|
| 56 |
-
List[Image.Image]: The preprocessed images.
|
| 57 |
-
"""
|
| 58 |
images = [image[0] for image in images]
|
| 59 |
processed_images = [pipeline.preprocess_image(image) for image in images]
|
| 60 |
return processed_images
|
|
@@ -101,15 +78,11 @@ def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
|
| 101 |
|
| 102 |
|
| 103 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
| 104 |
-
"""
|
| 105 |
-
Get the random seed.
|
| 106 |
-
"""
|
| 107 |
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
| 108 |
|
| 109 |
|
| 110 |
@spaces.GPU
|
| 111 |
def image_to_3d(
|
| 112 |
-
image: Image.Image,
|
| 113 |
multiimages: List[Tuple[Image.Image, str]],
|
| 114 |
is_multiimage: bool,
|
| 115 |
seed: int,
|
|
@@ -120,24 +93,6 @@ def image_to_3d(
|
|
| 120 |
multiimage_algo: Literal["multidiffusion", "stochastic"],
|
| 121 |
req: gr.Request,
|
| 122 |
) -> Tuple[dict, str]:
|
| 123 |
-
"""
|
| 124 |
-
Convert an image to a 3D model.
|
| 125 |
-
|
| 126 |
-
Args:
|
| 127 |
-
image (Image.Image): The input image.
|
| 128 |
-
multiimages (List[Tuple[Image.Image, str]]): The input images in multi-image mode.
|
| 129 |
-
is_multiimage (bool): Whether is in multi-image mode.
|
| 130 |
-
seed (int): The random seed.
|
| 131 |
-
ss_guidance_strength (float): The guidance strength for sparse structure generation.
|
| 132 |
-
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
|
| 133 |
-
slat_guidance_strength (float): The guidance strength for structured latent generation.
|
| 134 |
-
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
|
| 135 |
-
multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation.
|
| 136 |
-
|
| 137 |
-
Returns:
|
| 138 |
-
dict: The information of the generated 3D model.
|
| 139 |
-
str: The path to the video of the 3D model.
|
| 140 |
-
"""
|
| 141 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 142 |
if not is_multiimage:
|
| 143 |
outputs = pipeline.run(
|
|
@@ -187,17 +142,6 @@ def extract_glb(
|
|
| 187 |
texture_size: int,
|
| 188 |
req: gr.Request,
|
| 189 |
) -> Tuple[str, str]:
|
| 190 |
-
"""
|
| 191 |
-
Extract a GLB file from the 3D model.
|
| 192 |
-
|
| 193 |
-
Args:
|
| 194 |
-
state (dict): The state of the generated 3D model.
|
| 195 |
-
mesh_simplify (float): The mesh simplification factor.
|
| 196 |
-
texture_size (int): The texture resolution.
|
| 197 |
-
|
| 198 |
-
Returns:
|
| 199 |
-
str: The path to the extracted GLB file.
|
| 200 |
-
"""
|
| 201 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 202 |
gs, mesh = unpack_state(state)
|
| 203 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
|
@@ -209,15 +153,6 @@ def extract_glb(
|
|
| 209 |
|
| 210 |
@spaces.GPU
|
| 211 |
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
| 212 |
-
"""
|
| 213 |
-
Extract a Gaussian file from the 3D model.
|
| 214 |
-
|
| 215 |
-
Args:
|
| 216 |
-
state (dict): The state of the generated 3D model.
|
| 217 |
-
|
| 218 |
-
Returns:
|
| 219 |
-
str: The path to the extracted Gaussian file.
|
| 220 |
-
"""
|
| 221 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 222 |
gs, _ = unpack_state(state)
|
| 223 |
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
|
@@ -239,44 +174,24 @@ def prepare_multi_example() -> List[Image.Image]:
|
|
| 239 |
images.append(Image.fromarray(np.concatenate(_images, axis=1)))
|
| 240 |
return images
|
| 241 |
|
| 242 |
-
|
| 243 |
-
def split_image(image: Image.Image) -> List[Image.Image]:
|
| 244 |
-
"""
|
| 245 |
-
Split an image into multiple views.
|
| 246 |
-
"""
|
| 247 |
-
image = np.array(image)
|
| 248 |
-
alpha = image[..., 3]
|
| 249 |
-
alpha = np.any(alpha>0, axis=0)
|
| 250 |
-
start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist()
|
| 251 |
-
end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist()
|
| 252 |
-
images = []
|
| 253 |
-
for s, e in zip(start_pos, end_pos):
|
| 254 |
-
images.append(Image.fromarray(image[:, s:e+1]))
|
| 255 |
-
return [preprocess_image(image) for image in images]
|
| 256 |
-
|
| 257 |
-
|
| 258 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
| 259 |
gr.Markdown("""
|
| 260 |
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
| 261 |
-
* Upload an
|
| 262 |
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
|
| 263 |
-
|
| 264 |
-
β¨New: 1) Experimental multi-image support. 2) Gaussian file extraction.
|
| 265 |
""")
|
| 266 |
|
| 267 |
with gr.Row():
|
| 268 |
with gr.Column():
|
| 269 |
with gr.Tabs() as input_tabs:
|
| 270 |
-
with gr.Tab(label="Single Image", id=0) as single_image_input_tab:
|
| 271 |
-
image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
|
| 272 |
with gr.Tab(label="Multiple Images", id=1) as multiimage_input_tab:
|
| 273 |
multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3)
|
| 274 |
gr.Markdown("""
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
*NOTE: this is an experimental algorithm without training a specialized model. It may not produce the best results for all images, especially those having different poses or inconsistent details.*
|
| 278 |
""")
|
| 279 |
-
|
| 280 |
with gr.Accordion(label="Generation Settings", open=False):
|
| 281 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
| 282 |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
|
@@ -289,8 +204,7 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 289 |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
| 290 |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
| 291 |
multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")
|
| 292 |
-
|
| 293 |
-
generate_btn = gr.Button("Generate")
|
| 294 |
|
| 295 |
with gr.Accordion(label="GLB Extraction Settings", open=False):
|
| 296 |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
|
@@ -299,10 +213,11 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 299 |
with gr.Row():
|
| 300 |
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
| 301 |
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
|
|
|
| 302 |
gr.Markdown("""
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
with gr.Column():
|
| 307 |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
|
| 308 |
model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300)
|
|
@@ -311,74 +226,47 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 311 |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
| 312 |
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
|
| 313 |
|
| 314 |
-
is_multiimage = gr.State(False)
|
| 315 |
output_buf = gr.State()
|
| 316 |
-
|
| 317 |
# Example images at the bottom of the page
|
| 318 |
-
with gr.Row() as
|
| 319 |
-
examples = gr.Examples(
|
| 320 |
-
examples=[
|
| 321 |
-
f'assets/example_image/{image}'
|
| 322 |
-
for image in os.listdir("assets/example_image")
|
| 323 |
-
],
|
| 324 |
-
inputs=[image_prompt],
|
| 325 |
-
fn=preprocess_image,
|
| 326 |
-
outputs=[image_prompt],
|
| 327 |
-
run_on_click=True,
|
| 328 |
-
examples_per_page=64,
|
| 329 |
-
)
|
| 330 |
-
with gr.Row(visible=False) as multiimage_example:
|
| 331 |
examples_multi = gr.Examples(
|
| 332 |
examples=prepare_multi_example(),
|
| 333 |
-
inputs=[
|
| 334 |
fn=split_image,
|
| 335 |
outputs=[multiimage_prompt],
|
| 336 |
run_on_click=True,
|
| 337 |
examples_per_page=8,
|
| 338 |
)
|
| 339 |
-
|
| 340 |
# Handlers
|
| 341 |
demo.load(start_session)
|
| 342 |
demo.unload(end_session)
|
| 343 |
|
| 344 |
-
single_image_input_tab.select(
|
| 345 |
-
lambda: tuple([False, gr.Row.update(visible=True), gr.Row.update(visible=False)]),
|
| 346 |
-
outputs=[is_multiimage, single_image_example, multiimage_example]
|
| 347 |
-
)
|
| 348 |
-
multiimage_input_tab.select(
|
| 349 |
-
lambda: tuple([True, gr.Row.update(visible=False), gr.Row.update(visible=True)]),
|
| 350 |
-
outputs=[is_multiimage, single_image_example, multiimage_example]
|
| 351 |
-
)
|
| 352 |
-
|
| 353 |
-
image_prompt.upload(
|
| 354 |
-
preprocess_image,
|
| 355 |
-
inputs=[image_prompt],
|
| 356 |
-
outputs=[image_prompt],
|
| 357 |
-
)
|
| 358 |
multiimage_prompt.upload(
|
| 359 |
preprocess_images,
|
| 360 |
inputs=[multiimage_prompt],
|
| 361 |
outputs=[multiimage_prompt],
|
| 362 |
)
|
| 363 |
-
|
| 364 |
generate_btn.click(
|
| 365 |
get_seed,
|
| 366 |
inputs=[randomize_seed, seed],
|
| 367 |
outputs=[seed],
|
| 368 |
).then(
|
| 369 |
image_to_3d,
|
| 370 |
-
inputs=[
|
| 371 |
outputs=[output_buf, video_output],
|
| 372 |
).then(
|
| 373 |
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
|
| 374 |
outputs=[extract_glb_btn, extract_gs_btn],
|
| 375 |
)
|
| 376 |
-
|
| 377 |
video_output.clear(
|
| 378 |
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
|
| 379 |
outputs=[extract_glb_btn, extract_gs_btn],
|
| 380 |
)
|
| 381 |
-
|
| 382 |
extract_glb_btn.click(
|
| 383 |
extract_glb,
|
| 384 |
inputs=[output_buf, mesh_simplify, texture_size],
|
|
@@ -396,12 +284,11 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 396 |
lambda: gr.Button(interactive=True),
|
| 397 |
outputs=[download_gs],
|
| 398 |
)
|
| 399 |
-
|
| 400 |
model_output.clear(
|
| 401 |
lambda: gr.Button(interactive=False),
|
| 402 |
outputs=[download_glb],
|
| 403 |
)
|
| 404 |
-
|
| 405 |
|
| 406 |
# Launch the Gradio app
|
| 407 |
if __name__ == "__main__":
|
|
@@ -411,4 +298,4 @@ if __name__ == "__main__":
|
|
| 411 |
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
|
| 412 |
except:
|
| 413 |
pass
|
| 414 |
-
demo.launch(show_error=True)
|
|
|
|
| 31 |
shutil.rmtree(user_dir)
|
| 32 |
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
images = [image[0] for image in images]
|
| 36 |
processed_images = [pipeline.preprocess_image(image) for image in images]
|
| 37 |
return processed_images
|
|
|
|
| 78 |
|
| 79 |
|
| 80 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
|
|
|
|
|
|
|
|
|
| 81 |
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
| 82 |
|
| 83 |
|
| 84 |
@spaces.GPU
|
| 85 |
def image_to_3d(
|
|
|
|
| 86 |
multiimages: List[Tuple[Image.Image, str]],
|
| 87 |
is_multiimage: bool,
|
| 88 |
seed: int,
|
|
|
|
| 93 |
multiimage_algo: Literal["multidiffusion", "stochastic"],
|
| 94 |
req: gr.Request,
|
| 95 |
) -> Tuple[dict, str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 97 |
if not is_multiimage:
|
| 98 |
outputs = pipeline.run(
|
|
|
|
| 142 |
texture_size: int,
|
| 143 |
req: gr.Request,
|
| 144 |
) -> Tuple[str, str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 146 |
gs, mesh = unpack_state(state)
|
| 147 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
|
|
|
| 153 |
|
| 154 |
@spaces.GPU
|
| 155 |
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 157 |
gs, _ = unpack_state(state)
|
| 158 |
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
|
|
|
| 174 |
images.append(Image.fromarray(np.concatenate(_images, axis=1)))
|
| 175 |
return images
|
| 176 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
| 178 |
gr.Markdown("""
|
| 179 |
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
| 180 |
+
* Upload multiple images of an object from different views and click "Generate" to create a 3D asset.
|
| 181 |
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
|
| 182 |
+
β¨New: Experimental multi-image support and Gaussian file extraction.
|
|
|
|
| 183 |
""")
|
| 184 |
|
| 185 |
with gr.Row():
|
| 186 |
with gr.Column():
|
| 187 |
with gr.Tabs() as input_tabs:
|
|
|
|
|
|
|
| 188 |
with gr.Tab(label="Multiple Images", id=1) as multiimage_input_tab:
|
| 189 |
multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3)
|
| 190 |
gr.Markdown("""
|
| 191 |
+
Input different views of the object in separate images.
|
| 192 |
+
NOTE: this is an experimental algorithm without training a specialized model. It may not produce the best results for all images, especially those having different poses or inconsistent details.*
|
|
|
|
| 193 |
""")
|
| 194 |
+
|
| 195 |
with gr.Accordion(label="Generation Settings", open=False):
|
| 196 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
| 197 |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
|
|
|
| 204 |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
| 205 |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
| 206 |
multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")
|
| 207 |
+
generate_btn = gr.Button("Generate")
|
|
|
|
| 208 |
|
| 209 |
with gr.Accordion(label="GLB Extraction Settings", open=False):
|
| 210 |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
|
|
|
| 213 |
with gr.Row():
|
| 214 |
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
| 215 |
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
| 216 |
+
|
| 217 |
gr.Markdown("""
|
| 218 |
+
NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
|
| 219 |
+
""")
|
| 220 |
+
|
| 221 |
with gr.Column():
|
| 222 |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
|
| 223 |
model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300)
|
|
|
|
| 226 |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
| 227 |
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
|
| 228 |
|
|
|
|
| 229 |
output_buf = gr.State()
|
| 230 |
+
|
| 231 |
# Example images at the bottom of the page
|
| 232 |
+
with gr.Row(visible=True) as multiimage_example:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
examples_multi = gr.Examples(
|
| 234 |
examples=prepare_multi_example(),
|
| 235 |
+
inputs=[multiimage_prompt],
|
| 236 |
fn=split_image,
|
| 237 |
outputs=[multiimage_prompt],
|
| 238 |
run_on_click=True,
|
| 239 |
examples_per_page=8,
|
| 240 |
)
|
| 241 |
+
|
| 242 |
# Handlers
|
| 243 |
demo.load(start_session)
|
| 244 |
demo.unload(end_session)
|
| 245 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
multiimage_prompt.upload(
|
| 247 |
preprocess_images,
|
| 248 |
inputs=[multiimage_prompt],
|
| 249 |
outputs=[multiimage_prompt],
|
| 250 |
)
|
| 251 |
+
|
| 252 |
generate_btn.click(
|
| 253 |
get_seed,
|
| 254 |
inputs=[randomize_seed, seed],
|
| 255 |
outputs=[seed],
|
| 256 |
).then(
|
| 257 |
image_to_3d,
|
| 258 |
+
inputs=[multiimage_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo],
|
| 259 |
outputs=[output_buf, video_output],
|
| 260 |
).then(
|
| 261 |
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
|
| 262 |
outputs=[extract_glb_btn, extract_gs_btn],
|
| 263 |
)
|
| 264 |
+
|
| 265 |
video_output.clear(
|
| 266 |
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
|
| 267 |
outputs=[extract_glb_btn, extract_gs_btn],
|
| 268 |
)
|
| 269 |
+
|
| 270 |
extract_glb_btn.click(
|
| 271 |
extract_glb,
|
| 272 |
inputs=[output_buf, mesh_simplify, texture_size],
|
|
|
|
| 284 |
lambda: gr.Button(interactive=True),
|
| 285 |
outputs=[download_gs],
|
| 286 |
)
|
| 287 |
+
|
| 288 |
model_output.clear(
|
| 289 |
lambda: gr.Button(interactive=False),
|
| 290 |
outputs=[download_glb],
|
| 291 |
)
|
|
|
|
| 292 |
|
| 293 |
# Launch the Gradio app
|
| 294 |
if __name__ == "__main__":
|
|
|
|
| 298 |
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
|
| 299 |
except:
|
| 300 |
pass
|
| 301 |
+
demo.launch(show_error=True)
|