Spaces:
Running
on
Zero
Running
on
Zero
AoTI blocks load
Browse files- aoti.py +30 -0
- app.py +29 -15
- optimization.py +0 -106
- optimization_utils.py +0 -107
aoti.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
"""
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from huggingface_hub import hf_hub_download
|
| 6 |
+
from spaces.zero.torch.aoti import ZeroGPUCompiledModel
|
| 7 |
+
from spaces.zero.torch.aoti import ZeroGPUWeights
|
| 8 |
+
from torch._functorch._aot_autograd.subclass_parametrization import unwrap_tensor_subclass_parameters
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def _shallow_clone_module(module: torch.nn.Module) -> torch.nn.Module:
|
| 12 |
+
clone = object.__new__(module.__class__)
|
| 13 |
+
clone.__dict__ = module.__dict__.copy()
|
| 14 |
+
clone._parameters = module._parameters.copy()
|
| 15 |
+
clone._buffers = module._buffers.copy()
|
| 16 |
+
clone._modules = {k: shallow_clone_module(v) for k, v in module._modules.items()}
|
| 17 |
+
return clone
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def aoti_blocks_load(module: torch.nn.Module, repo_id: str, variant: str | None = None):
|
| 21 |
+
repeated_blocks = module._repeated_blocks
|
| 22 |
+
subfolder = name if variant is None else f'{name}.{variant}'
|
| 23 |
+
aoti_files = {name: hf_hub_download(repo_id, 'package.pt2', subfolder=subfolder) for name in repeated_blocks}
|
| 24 |
+
for block_name, aoti_file in aoti_files.items():
|
| 25 |
+
for block in module.modules():
|
| 26 |
+
if block.__class__.__name__ == block_name:
|
| 27 |
+
block_ = _shallow_clone_module(block)
|
| 28 |
+
unwrap_tensor_subclass_parameters(block_)
|
| 29 |
+
weights = ZeroGPUWeights(block_.state_dict())
|
| 30 |
+
block.forward = ZeroGPUCompiledModel(aoti_file, weights)
|
app.py
CHANGED
|
@@ -11,6 +11,12 @@ import random
|
|
| 11 |
import gc
|
| 12 |
from optimization import optimize_pipeline_
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
|
| 16 |
|
|
@@ -22,8 +28,8 @@ MULTIPLE_OF = 16
|
|
| 22 |
MAX_SEED = np.iinfo(np.int32).max
|
| 23 |
|
| 24 |
FIXED_FPS = 16
|
| 25 |
-
MIN_FRAMES_MODEL =
|
| 26 |
-
MAX_FRAMES_MODEL =
|
| 27 |
|
| 28 |
MIN_DURATION = round(MIN_FRAMES_MODEL/FIXED_FPS,1)
|
| 29 |
MAX_DURATION = round(MAX_FRAMES_MODEL/FIXED_FPS,1)
|
|
@@ -43,21 +49,29 @@ pipe = WanImageToVideoPipeline.from_pretrained(MODEL_ID,
|
|
| 43 |
torch_dtype=torch.bfloat16,
|
| 44 |
).to('cuda')
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
|
|
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
prompt='prompt',
|
| 57 |
-
height=OPTIMIZE_HEIGHT,
|
| 58 |
-
width=OPTIMIZE_WIDTH,
|
| 59 |
-
num_frames=MAX_FRAMES_MODEL,
|
| 60 |
-
)
|
| 61 |
|
| 62 |
|
| 63 |
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
|
|
|
|
| 11 |
import gc
|
| 12 |
from optimization import optimize_pipeline_
|
| 13 |
|
| 14 |
+
from torchao.quantization import quantize_
|
| 15 |
+
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig
|
| 16 |
+
from torchao.quantization import Int8WeightOnlyConfig
|
| 17 |
+
|
| 18 |
+
import aoti
|
| 19 |
+
|
| 20 |
|
| 21 |
MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
|
| 22 |
|
|
|
|
| 28 |
MAX_SEED = np.iinfo(np.int32).max
|
| 29 |
|
| 30 |
FIXED_FPS = 16
|
| 31 |
+
MIN_FRAMES_MODEL = 9
|
| 32 |
+
MAX_FRAMES_MODEL = 121
|
| 33 |
|
| 34 |
MIN_DURATION = round(MIN_FRAMES_MODEL/FIXED_FPS,1)
|
| 35 |
MAX_DURATION = round(MAX_FRAMES_MODEL/FIXED_FPS,1)
|
|
|
|
| 49 |
torch_dtype=torch.bfloat16,
|
| 50 |
).to('cuda')
|
| 51 |
|
| 52 |
+
pipeline.load_lora_weights(
|
| 53 |
+
"Kijai/WanVideo_comfy",
|
| 54 |
+
weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
|
| 55 |
+
adapter_name="lightx2v"
|
| 56 |
+
)
|
| 57 |
+
kwargs_lora = {}
|
| 58 |
+
kwargs_lora["load_into_transformer_2"] = True
|
| 59 |
+
pipeline.load_lora_weights(
|
| 60 |
+
"Kijai/WanVideo_comfy",
|
| 61 |
+
weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
|
| 62 |
+
adapter_name="lightx2v_2", **kwargs_lora
|
| 63 |
+
)
|
| 64 |
+
pipeline.set_adapters(["lightx2v", "lightx2v_2"], adapter_weights=[1., 1.])
|
| 65 |
+
pipeline.fuse_lora(adapter_names=["lightx2v"], lora_scale=3., components=["transformer"])
|
| 66 |
+
pipeline.fuse_lora(adapter_names=["lightx2v_2"], lora_scale=1., components=["transformer_2"])
|
| 67 |
+
pipeline.unload_lora_weights()
|
| 68 |
|
| 69 |
+
quantize_(pipeline.text_encoder, Int8WeightOnlyConfig())
|
| 70 |
+
quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig())
|
| 71 |
+
quantize_(pipeline.transformer_2, Float8DynamicActivationFloat8WeightConfig())
|
| 72 |
|
| 73 |
+
aoti.aoti_blocks_load(pipeline.transformer, 'zerogpu-aoti/Wan2', variant='fp8da')
|
| 74 |
+
aoti.aoti_blocks_load(pipeline.transformer_2, 'zerogpu-aoti/Wan2', variant='fp8da')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
|
| 77 |
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
|
optimization.py
DELETED
|
@@ -1,106 +0,0 @@
|
|
| 1 |
-
"""
|
| 2 |
-
"""
|
| 3 |
-
|
| 4 |
-
from typing import Any
|
| 5 |
-
from typing import Callable
|
| 6 |
-
from typing import ParamSpec
|
| 7 |
-
|
| 8 |
-
import spaces
|
| 9 |
-
import torch
|
| 10 |
-
from torch.utils._pytree import tree_map_only
|
| 11 |
-
from torchao.quantization import quantize_
|
| 12 |
-
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig
|
| 13 |
-
from torchao.quantization import Int8WeightOnlyConfig
|
| 14 |
-
|
| 15 |
-
from optimization_utils import capture_component_call
|
| 16 |
-
from optimization_utils import aoti_compile
|
| 17 |
-
from optimization_utils import drain_module_parameters
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
P = ParamSpec('P')
|
| 21 |
-
|
| 22 |
-
LATENT_FRAMES_DIM = torch.export.Dim('num_latent_frames', min=8, max=81)
|
| 23 |
-
|
| 24 |
-
LATENT_PATCHED_HEIGHT_DIM = torch.export.Dim('latent_patched_height', min=30, max=52)
|
| 25 |
-
LATENT_PATCHED_WIDTH_DIM = torch.export.Dim('latent_patched_width', min=30, max=52)
|
| 26 |
-
|
| 27 |
-
TRANSFORMER_DYNAMIC_SHAPES = {
|
| 28 |
-
'hidden_states': {
|
| 29 |
-
2: LATENT_FRAMES_DIM,
|
| 30 |
-
3: 2 * LATENT_PATCHED_HEIGHT_DIM,
|
| 31 |
-
4: 2 * LATENT_PATCHED_WIDTH_DIM,
|
| 32 |
-
},
|
| 33 |
-
}
|
| 34 |
-
|
| 35 |
-
INDUCTOR_CONFIGS = {
|
| 36 |
-
'conv_1x1_as_mm': True,
|
| 37 |
-
'epilogue_fusion': False,
|
| 38 |
-
'coordinate_descent_tuning': True,
|
| 39 |
-
'coordinate_descent_check_all_directions': True,
|
| 40 |
-
'max_autotune': True,
|
| 41 |
-
'triton.cudagraphs': True,
|
| 42 |
-
}
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs):
|
| 46 |
-
|
| 47 |
-
@spaces.GPU(duration=1500)
|
| 48 |
-
def compile_transformer():
|
| 49 |
-
|
| 50 |
-
# This LoRA fusion part remains the same
|
| 51 |
-
pipeline.load_lora_weights(
|
| 52 |
-
"Kijai/WanVideo_comfy",
|
| 53 |
-
weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
|
| 54 |
-
adapter_name="lightx2v"
|
| 55 |
-
)
|
| 56 |
-
kwargs_lora = {}
|
| 57 |
-
kwargs_lora["load_into_transformer_2"] = True
|
| 58 |
-
pipeline.load_lora_weights(
|
| 59 |
-
"Kijai/WanVideo_comfy",
|
| 60 |
-
weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
|
| 61 |
-
adapter_name="lightx2v_2", **kwargs_lora
|
| 62 |
-
)
|
| 63 |
-
pipeline.set_adapters(["lightx2v", "lightx2v_2"], adapter_weights=[1., 1.])
|
| 64 |
-
pipeline.fuse_lora(adapter_names=["lightx2v"], lora_scale=3., components=["transformer"])
|
| 65 |
-
pipeline.fuse_lora(adapter_names=["lightx2v_2"], lora_scale=1., components=["transformer_2"])
|
| 66 |
-
pipeline.unload_lora_weights()
|
| 67 |
-
|
| 68 |
-
with capture_component_call(pipeline, 'transformer') as call:
|
| 69 |
-
pipeline(*args, **kwargs)
|
| 70 |
-
|
| 71 |
-
dynamic_shapes = tree_map_only((torch.Tensor, bool), lambda t: None, call.kwargs)
|
| 72 |
-
dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES
|
| 73 |
-
|
| 74 |
-
quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig())
|
| 75 |
-
quantize_(pipeline.transformer_2, Float8DynamicActivationFloat8WeightConfig())
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
exported_1 = torch.export.export(
|
| 79 |
-
mod=pipeline.transformer,
|
| 80 |
-
args=call.args,
|
| 81 |
-
kwargs=call.kwargs,
|
| 82 |
-
dynamic_shapes=dynamic_shapes,
|
| 83 |
-
)
|
| 84 |
-
|
| 85 |
-
exported_2 = torch.export.export(
|
| 86 |
-
mod=pipeline.transformer_2,
|
| 87 |
-
args=call.args,
|
| 88 |
-
kwargs=call.kwargs,
|
| 89 |
-
dynamic_shapes=dynamic_shapes,
|
| 90 |
-
)
|
| 91 |
-
|
| 92 |
-
compiled_1 = aoti_compile(exported_1, INDUCTOR_CONFIGS)
|
| 93 |
-
compiled_2 = aoti_compile(exported_2, INDUCTOR_CONFIGS)
|
| 94 |
-
|
| 95 |
-
return compiled_1, compiled_2
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
quantize_(pipeline.text_encoder, Int8WeightOnlyConfig())
|
| 99 |
-
|
| 100 |
-
compiled_transformer_1, compiled_transformer_2 = compile_transformer()
|
| 101 |
-
|
| 102 |
-
pipeline.transformer.forward = compiled_transformer_1
|
| 103 |
-
drain_module_parameters(pipeline.transformer)
|
| 104 |
-
|
| 105 |
-
pipeline.transformer_2.forward = compiled_transformer_2
|
| 106 |
-
drain_module_parameters(pipeline.transformer_2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
optimization_utils.py
DELETED
|
@@ -1,107 +0,0 @@
|
|
| 1 |
-
"""
|
| 2 |
-
"""
|
| 3 |
-
import contextlib
|
| 4 |
-
from contextvars import ContextVar
|
| 5 |
-
from io import BytesIO
|
| 6 |
-
from typing import Any
|
| 7 |
-
from typing import cast
|
| 8 |
-
from unittest.mock import patch
|
| 9 |
-
|
| 10 |
-
import torch
|
| 11 |
-
from torch._inductor.package.package import package_aoti
|
| 12 |
-
from torch.export.pt2_archive._package import AOTICompiledModel
|
| 13 |
-
from torch.export.pt2_archive._package_weights import Weights
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
INDUCTOR_CONFIGS_OVERRIDES = {
|
| 17 |
-
'aot_inductor.package_constants_in_so': False,
|
| 18 |
-
'aot_inductor.package_constants_on_disk': True,
|
| 19 |
-
'aot_inductor.package': True,
|
| 20 |
-
}
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
class ZeroGPUWeights:
|
| 24 |
-
def __init__(self, constants_map: dict[str, torch.Tensor], to_cuda: bool = False):
|
| 25 |
-
if to_cuda:
|
| 26 |
-
self.constants_map = {name: tensor.to('cuda') for name, tensor in constants_map.items()}
|
| 27 |
-
else:
|
| 28 |
-
self.constants_map = constants_map
|
| 29 |
-
def __reduce__(self):
|
| 30 |
-
constants_map: dict[str, torch.Tensor] = {}
|
| 31 |
-
for name, tensor in self.constants_map.items():
|
| 32 |
-
tensor_ = torch.empty_like(tensor, device='cpu').pin_memory()
|
| 33 |
-
constants_map[name] = tensor_.copy_(tensor).detach().share_memory_()
|
| 34 |
-
return ZeroGPUWeights, (constants_map, True)
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
class ZeroGPUCompiledModel:
|
| 38 |
-
def __init__(self, archive_file: torch.types.FileLike, weights: ZeroGPUWeights):
|
| 39 |
-
self.archive_file = archive_file
|
| 40 |
-
self.weights = weights
|
| 41 |
-
self.compiled_model: ContextVar[AOTICompiledModel | None] = ContextVar('compiled_model', default=None)
|
| 42 |
-
def __call__(self, *args, **kwargs):
|
| 43 |
-
if (compiled_model := self.compiled_model.get()) is None:
|
| 44 |
-
compiled_model = cast(AOTICompiledModel, torch._inductor.aoti_load_package(self.archive_file))
|
| 45 |
-
compiled_model.load_constants(self.weights.constants_map, check_full_update=True, user_managed=True)
|
| 46 |
-
self.compiled_model.set(compiled_model)
|
| 47 |
-
return compiled_model(*args, **kwargs)
|
| 48 |
-
def __reduce__(self):
|
| 49 |
-
return ZeroGPUCompiledModel, (self.archive_file, self.weights)
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
def aoti_compile(
|
| 53 |
-
exported_program: torch.export.ExportedProgram,
|
| 54 |
-
inductor_configs: dict[str, Any] | None = None,
|
| 55 |
-
):
|
| 56 |
-
inductor_configs = (inductor_configs or {}) | INDUCTOR_CONFIGS_OVERRIDES
|
| 57 |
-
gm = cast(torch.fx.GraphModule, exported_program.module())
|
| 58 |
-
assert exported_program.example_inputs is not None
|
| 59 |
-
args, kwargs = exported_program.example_inputs
|
| 60 |
-
artifacts = torch._inductor.aot_compile(gm, args, kwargs, options=inductor_configs)
|
| 61 |
-
archive_file = BytesIO()
|
| 62 |
-
files: list[str | Weights] = [file for file in artifacts if isinstance(file, str)]
|
| 63 |
-
package_aoti(archive_file, files)
|
| 64 |
-
weights, = (artifact for artifact in artifacts if isinstance(artifact, Weights))
|
| 65 |
-
zerogpu_weights = ZeroGPUWeights({name: weights.get_weight(name)[0] for name in weights})
|
| 66 |
-
return ZeroGPUCompiledModel(archive_file, zerogpu_weights)
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
@contextlib.contextmanager
|
| 70 |
-
def capture_component_call(
|
| 71 |
-
pipeline: Any,
|
| 72 |
-
component_name: str,
|
| 73 |
-
component_method='forward',
|
| 74 |
-
):
|
| 75 |
-
|
| 76 |
-
class CapturedCallException(Exception):
|
| 77 |
-
def __init__(self, *args, **kwargs):
|
| 78 |
-
super().__init__()
|
| 79 |
-
self.args = args
|
| 80 |
-
self.kwargs = kwargs
|
| 81 |
-
|
| 82 |
-
class CapturedCall:
|
| 83 |
-
def __init__(self):
|
| 84 |
-
self.args: tuple[Any, ...] = ()
|
| 85 |
-
self.kwargs: dict[str, Any] = {}
|
| 86 |
-
|
| 87 |
-
component = getattr(pipeline, component_name)
|
| 88 |
-
captured_call = CapturedCall()
|
| 89 |
-
|
| 90 |
-
def capture_call(*args, **kwargs):
|
| 91 |
-
raise CapturedCallException(*args, **kwargs)
|
| 92 |
-
|
| 93 |
-
with patch.object(component, component_method, new=capture_call):
|
| 94 |
-
try:
|
| 95 |
-
yield captured_call
|
| 96 |
-
except CapturedCallException as e:
|
| 97 |
-
captured_call.args = e.args
|
| 98 |
-
captured_call.kwargs = e.kwargs
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
def drain_module_parameters(module: torch.nn.Module):
|
| 102 |
-
state_dict_meta = {name: {'device': tensor.device, 'dtype': tensor.dtype} for name, tensor in module.state_dict().items()}
|
| 103 |
-
state_dict = {name: torch.nn.Parameter(torch.empty_like(tensor, device='cpu')) for name, tensor in module.state_dict().items()}
|
| 104 |
-
module.load_state_dict(state_dict, assign=True)
|
| 105 |
-
for name, param in state_dict.items():
|
| 106 |
-
meta = state_dict_meta[name]
|
| 107 |
-
param.data = torch.Tensor([]).to(**meta)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|