Spaces:
Runtime error
Runtime error
fix app
Browse files
main.py
CHANGED
|
@@ -1,21 +1,96 @@
|
|
| 1 |
"""⭐ Text Classification with Optimum and ONNXRuntime
|
| 2 |
|
|
|
|
|
|
|
| 3 |
Author:
|
| 4 |
- @ChainYo - https://github.com/ChainYo
|
| 5 |
"""
|
| 6 |
|
|
|
|
|
|
|
|
|
|
| 7 |
import streamlit as st
|
| 8 |
|
| 9 |
-
from
|
| 10 |
-
from
|
| 11 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
st.set_page_config(page_title="Optimum Text Classification", page_icon="⭐")
|
| 17 |
-
st.title("
|
| 18 |
-
st.subheader("
|
| 19 |
st.markdown("""
|
| 20 |
[](https://github.com/ChainYo)
|
| 21 |
[](https://huggingface.co/ChainYo)
|
|
@@ -23,36 +98,115 @@ st.markdown("""
|
|
| 23 |
[](https://discord.gg/)
|
| 24 |
""")
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
| 33 |
|
| 34 |
-
if "
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
if "
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
st.session_state["ort_pipeline"] = ort_pipeline
|
| 43 |
|
| 44 |
-
if "
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
quantized = st.checkbox("Quantize the model", value=False)
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
"""⭐ Text Classification with Optimum and ONNXRuntime
|
| 2 |
|
| 3 |
+
Streamlit application to classify text using multiple models.
|
| 4 |
+
|
| 5 |
Author:
|
| 6 |
- @ChainYo - https://github.com/ChainYo
|
| 7 |
"""
|
| 8 |
|
| 9 |
+
import plotly
|
| 10 |
+
import numpy as np
|
| 11 |
+
import pandas as pd
|
| 12 |
import streamlit as st
|
| 13 |
|
| 14 |
+
from pathlib import Path
|
| 15 |
+
from time import sleep
|
| 16 |
+
from typing import Dict, List, Union
|
| 17 |
+
|
| 18 |
+
from optimum.onnxruntime import ORTModelForSequenceClassification, ORTOptimizer, ORTQuantizer
|
| 19 |
+
from optimum.onnxruntime.configuration import OptimizationConfig, AutoQuantizationConfig
|
| 20 |
+
from optimum.onnxruntime.model import ORTModel
|
| 21 |
+
from optimum.pipelines import pipeline as ort_pipeline
|
| 22 |
+
from transformers import BertTokenizer, BertForSequenceClassification, pipeline
|
| 23 |
+
|
| 24 |
+
from utils import calculate_inference_time
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
HUB_MODEL_PATH = "yiyanghkust/finbert-tone"
|
| 28 |
+
BASE_PATH = Path("models")
|
| 29 |
+
ONNX_MODEL_PATH = BASE_PATH.joinpath("model.onnx")
|
| 30 |
+
OPTIMIZED_BASE_PATH = BASE_PATH.joinpath("optimized")
|
| 31 |
+
OPTIMIZED_MODEL_PATH = OPTIMIZED_BASE_PATH.joinpath("model-optimized.onnx")
|
| 32 |
+
QUANTIZED_BASE_PATH = BASE_PATH.joinpath("quantized")
|
| 33 |
+
QUANTIZED_MODEL_PATH = QUANTIZED_BASE_PATH.joinpath("model-quantized.onnx")
|
| 34 |
+
VAR2LABEL = {
|
| 35 |
+
"pt_pipeline": "PyTorch",
|
| 36 |
+
"ort_pipeline": "ONNXRuntime",
|
| 37 |
+
"ort_optimized_pipeline": "ONNXRuntime (Optimized)",
|
| 38 |
+
"ort_quantized_pipeline": "ONNXRuntime (Quantized)",
|
| 39 |
+
}
|
| 40 |
|
| 41 |
|
| 42 |
+
def get_timers(
|
| 43 |
+
samples: Union[List[str], str], exp_number: int, only_mean: bool = False
|
| 44 |
+
) -> Dict[str, float]:
|
| 45 |
+
"""
|
| 46 |
+
Calculate inference time for each model for a given sample or list of samples.
|
| 47 |
+
|
| 48 |
+
Parameters
|
| 49 |
+
----------
|
| 50 |
+
samples : Union[List[str], str]
|
| 51 |
+
Sample or list of samples to calculate inference time for.
|
| 52 |
+
exp_number : int
|
| 53 |
+
Number of experiments to run.
|
| 54 |
+
|
| 55 |
+
Returns
|
| 56 |
+
-------
|
| 57 |
+
Dict[str, float]
|
| 58 |
+
Dictionary of inference times for each model for the given samples.
|
| 59 |
+
"""
|
| 60 |
+
if isinstance(samples, str):
|
| 61 |
+
samples = [samples]
|
| 62 |
+
|
| 63 |
+
timers: Dict[str, float] = {}
|
| 64 |
+
for model in VAR2LABEL.keys():
|
| 65 |
+
time_buffer = []
|
| 66 |
+
for _ in range(exp_number):
|
| 67 |
+
with calculate_inference_time(time_buffer):
|
| 68 |
+
st.session_state[model](samples)
|
| 69 |
+
timers[VAR2LABEL[model]] = np.mean(time_buffer) if only_mean else time_buffer
|
| 70 |
+
return timers
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def get_plot(timers: Dict[str, Union[float, List[float]]]) -> plotly.graph_objs._figure.Figure:
|
| 74 |
+
"""
|
| 75 |
+
Plot the inference time for each model.
|
| 76 |
+
|
| 77 |
+
Parameters
|
| 78 |
+
----------
|
| 79 |
+
timers : Dict[str, Union[float, List[float]]]
|
| 80 |
+
Dictionary of inference times for each model.
|
| 81 |
+
"""
|
| 82 |
+
data = pd.DataFrame.from_dict(timers, orient="columns")
|
| 83 |
+
colors = ["#140f0d", "#2b2c4f", "#615aa2", "#a991fa"]
|
| 84 |
+
fig = plotly.figure_factory.create_distplot(
|
| 85 |
+
[data[col] for col in data.columns], data.columns, bin_size=0.2, colors=colors
|
| 86 |
+
)
|
| 87 |
+
fig.update_layout(title_text="Inference Time", xaxis_title="Inference Time (s)", yaxis_title="Number of Samples")
|
| 88 |
+
return fig
|
| 89 |
+
|
| 90 |
|
| 91 |
st.set_page_config(page_title="Optimum Text Classification", page_icon="⭐")
|
| 92 |
+
st.title("⭐ Optimum Text Classification")
|
| 93 |
+
st.subheader("Classify financial news tone with 🤗 Optimum and ONNXRuntime")
|
| 94 |
st.markdown("""
|
| 95 |
[](https://github.com/ChainYo)
|
| 96 |
[](https://huggingface.co/ChainYo)
|
|
|
|
| 98 |
[](https://discord.gg/)
|
| 99 |
""")
|
| 100 |
|
| 101 |
+
with st.expander("⭐ Details", expanded=True):
|
| 102 |
+
st.markdown(
|
| 103 |
+
"""
|
| 104 |
+
This app is a **demo** of the [🤗 Optimum Text Classification](https://huggingface.co/docs/optimum/onnxruntime/modeling_ort#optimum-inference-with-onnx-runtime) pipeline.
|
| 105 |
+
We aim to compare the original pipeline with the ONNXRuntime pipeline.
|
| 106 |
|
| 107 |
+
We use the [Finbert-Tone](https://huggingface.co/yiyanghkust/finbert-tone) model to classify financial news tone for the demo.
|
| 108 |
+
|
| 109 |
+
You can enter multiple sentences to classify them by separating them with a `; (semicolon)`.
|
| 110 |
+
"""
|
| 111 |
+
)
|
| 112 |
|
| 113 |
+
if "init_models" not in st.session_state:
|
| 114 |
+
st.session_state["init_models"] = True
|
| 115 |
+
if st.session_state["init_models"]:
|
| 116 |
+
with st.spinner(text="Loading files and models..."):
|
| 117 |
+
loading_logs = st.empty()
|
| 118 |
+
with loading_logs.container():
|
| 119 |
+
BASE_PATH.mkdir(exist_ok=True)
|
| 120 |
+
QUANTIZED_BASE_PATH.mkdir(exist_ok=True)
|
| 121 |
+
OPTIMIZED_BASE_PATH.mkdir(exist_ok=True)
|
| 122 |
|
| 123 |
+
if "tokenizer" not in st.session_state:
|
| 124 |
+
tokenizer = BertTokenizer.from_pretrained(HUB_MODEL_PATH)
|
| 125 |
+
st.session_state["tokenizer"] = tokenizer
|
| 126 |
+
st.text("✅ Tokenizer loaded.")
|
|
|
|
| 127 |
|
| 128 |
+
if "pt_model" not in st.session_state:
|
| 129 |
+
pt_model = BertForSequenceClassification.from_pretrained(HUB_MODEL_PATH, num_labels=3)
|
| 130 |
+
st.session_state["pt_model"] = pt_model
|
| 131 |
+
st.text("✅ PyTorch model loaded.")
|
| 132 |
+
|
| 133 |
+
if "ort_model" not in st.session_state:
|
| 134 |
+
ort_model = ORTModelForSequenceClassification.from_pretrained(HUB_MODEL_PATH, from_transformers=True)
|
| 135 |
+
# if not ONNX_MODEL_PATH.exists():
|
| 136 |
+
# ort_model.save_pretrained(ONNX_MODEL_PATH)
|
| 137 |
+
st.session_state["ort_model"] = ort_model
|
| 138 |
+
st.text("✅ ONNX Model loaded.")
|
| 139 |
+
|
| 140 |
+
if "optimized_model" not in st.session_state:
|
| 141 |
+
optimization_config = OptimizationConfig(optimization_level=99)
|
| 142 |
+
optimizer = ORTOptimizer.from_pretrained(HUB_MODEL_PATH, feature="sequence-classification")
|
| 143 |
+
if not OPTIMIZED_MODEL_PATH.exists():
|
| 144 |
+
optimizer.export(ONNX_MODEL_PATH, OPTIMIZED_MODEL_PATH, optimization_config=optimization_config)
|
| 145 |
+
optimizer.model.config.save_pretrained(OPTIMIZED_BASE_PATH)
|
| 146 |
+
optimized_model = ORTModelForSequenceClassification.from_pretrained(
|
| 147 |
+
OPTIMIZED_BASE_PATH, file_name=OPTIMIZED_MODEL_PATH.name
|
| 148 |
+
)
|
| 149 |
+
st.session_state["optimized_model"] = optimized_model
|
| 150 |
+
st.text("✅ Optimized ONNX model loaded.")
|
| 151 |
+
|
| 152 |
+
if "quantized_model" not in st.session_state:
|
| 153 |
+
quantization_config = AutoQuantizationConfig.arm64(is_static=False, per_channel=False)
|
| 154 |
+
quantizer = ORTQuantizer.from_pretrained(HUB_MODEL_PATH, feature="sequence-classification")
|
| 155 |
+
if not QUANTIZED_MODEL_PATH.exists():
|
| 156 |
+
quantizer.export(ONNX_MODEL_PATH, QUANTIZED_MODEL_PATH, quantization_config=quantization_config)
|
| 157 |
+
quantizer.model.config.save_pretrained(QUANTIZED_BASE_PATH)
|
| 158 |
+
quantized_model = ORTModelForSequenceClassification.from_pretrained(
|
| 159 |
+
QUANTIZED_BASE_PATH, file_name=QUANTIZED_MODEL_PATH.name
|
| 160 |
+
)
|
| 161 |
+
st.session_state["quantized_model"] = quantized_model
|
| 162 |
+
st.text("✅ Quantized ONNX model loaded.")
|
| 163 |
+
|
| 164 |
+
if "pt_pipeline" not in st.session_state:
|
| 165 |
+
pt_pipeline = pipeline(
|
| 166 |
+
"sentiment-analysis", tokenizer=st.session_state["tokenizer"], model=st.session_state["pt_model"]
|
| 167 |
+
)
|
| 168 |
+
st.session_state["pt_pipeline"] = pt_pipeline
|
| 169 |
+
|
| 170 |
+
if "ort_pipeline" not in st.session_state:
|
| 171 |
+
ort_pipeline = ort_pipeline(
|
| 172 |
+
"text-classification", tokenizer=st.session_state["tokenizer"], model=st.session_state["ort_model"]
|
| 173 |
+
)
|
| 174 |
+
st.session_state["ort_pipeline"] = ort_pipeline
|
| 175 |
+
|
| 176 |
+
if "ort_optimized_pipeline" not in st.session_state:
|
| 177 |
+
ort_optimized_pipeline = pipeline(
|
| 178 |
+
"text-classification",
|
| 179 |
+
tokenizer=st.session_state["tokenizer"],
|
| 180 |
+
model=st.session_state["optimized_model"],
|
| 181 |
+
)
|
| 182 |
+
st.session_state["ort_optimized_pipeline"] = ort_optimized_pipeline
|
| 183 |
+
|
| 184 |
+
if "ort_quantized_pipeline" not in st.session_state:
|
| 185 |
+
ort_quantized_pipeline = pipeline(
|
| 186 |
+
"text-classification",
|
| 187 |
+
tokenizer=st.session_state["tokenizer"],
|
| 188 |
+
model=st.session_state["quantized_model"],
|
| 189 |
+
)
|
| 190 |
+
st.session_state["ort_quantized_pipeline"] = ort_quantized_pipeline
|
| 191 |
|
| 192 |
+
st.text("✅ All pipelines are ready.")
|
| 193 |
+
sleep(2)
|
| 194 |
+
loading_logs.success("🎉 Everything is ready!")
|
| 195 |
+
st.session_state["init_models"] = False
|
| 196 |
|
| 197 |
+
if "inference_timers" not in st.session_state:
|
| 198 |
+
st.session_state["inference_timers"] = {}
|
|
|
|
| 199 |
|
| 200 |
+
exp_number = st.slider("The number of experiments per model.", min_value=100, max_value=300, value=150)
|
| 201 |
+
get_only_mean = st.checkbox("Get only the mean of the inference time for each model.", value=False)
|
| 202 |
+
input_text = st.text_area(
|
| 203 |
+
"Enter text to classify",
|
| 204 |
+
"there is a shortage of capital, and we need extra financing; growth is strong and we have plenty of liquidity; there are doubts about our finances; profits are flat"
|
| 205 |
+
)
|
| 206 |
+
run_inference = st.button("🚀 Run inference")
|
| 207 |
|
| 208 |
+
if run_inference:
|
| 209 |
+
st.text("🔎 Running inference...")
|
| 210 |
+
sentences = input_text.split(";")
|
| 211 |
+
st.session_state["inference_timers"] = get_timers(samples=sentences, exp_number=exp_number, only_mean=get_only_mean)
|
| 212 |
+
st.plotly_chart(get_plot(st.session_state["inference_timers"]), use_container_width=True)
|