Spaces:
Runtime error
Runtime error
fix loading pipelines
Browse files
main.py
CHANGED
|
@@ -18,7 +18,6 @@ from typing import Dict, List, Union
|
|
| 18 |
|
| 19 |
from optimum.onnxruntime import ORTModelForSequenceClassification, ORTOptimizer, ORTQuantizer
|
| 20 |
from optimum.onnxruntime.configuration import OptimizationConfig, AutoQuantizationConfig
|
| 21 |
-
from optimum.onnxruntime.model import ORTModel
|
| 22 |
from optimum.pipelines import pipeline as ort_pipeline
|
| 23 |
from transformers import BertTokenizer, BertForSequenceClassification, pipeline
|
| 24 |
|
|
@@ -39,6 +38,11 @@ VAR2LABEL = {
|
|
| 39 |
"ort_quantized_pipeline": "ONNXRuntime (Quantized)",
|
| 40 |
}
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
def get_timers(
|
| 44 |
samples: Union[List[str], str], exp_number: int, only_mean: bool = False
|
|
@@ -64,9 +68,10 @@ def get_timers(
|
|
| 64 |
timers: Dict[str, float] = {}
|
| 65 |
for model in VAR2LABEL.keys():
|
| 66 |
time_buffer = []
|
|
|
|
| 67 |
for _ in range(exp_number):
|
| 68 |
with calculate_inference_time(time_buffer):
|
| 69 |
-
st.session_state[
|
| 70 |
timers[VAR2LABEL[model]] = np.mean(time_buffer) if only_mean else time_buffer
|
| 71 |
return timers
|
| 72 |
|
|
@@ -87,6 +92,47 @@ def get_plot(timers: Dict[str, Union[float, List[float]]]) -> plotly.graph_objs.
|
|
| 87 |
)
|
| 88 |
fig.update_layout(title_text="Inference Time", xaxis_title="Inference Time (s)", yaxis_title="Number of Samples")
|
| 89 |
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
|
| 92 |
st.set_page_config(page_title="Optimum Text Classification", page_icon="⭐")
|
|
@@ -125,72 +171,10 @@ if st.session_state["init_models"]:
|
|
| 125 |
tokenizer = BertTokenizer.from_pretrained(HUB_MODEL_PATH)
|
| 126 |
st.session_state["tokenizer"] = tokenizer
|
| 127 |
st.text("✅ Tokenizer loaded.")
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
st.text("✅ PyTorch model loaded.")
|
| 133 |
-
|
| 134 |
-
if "ort_model" not in st.session_state:
|
| 135 |
-
ort_model = ORTModelForSequenceClassification.from_pretrained(HUB_MODEL_PATH, from_transformers=True)
|
| 136 |
-
if not ONNX_MODEL_PATH.exists():
|
| 137 |
-
ort_model.save_pretrained(ONNX_MODEL_PATH)
|
| 138 |
-
st.session_state["ort_model"] = ort_model
|
| 139 |
-
st.text("✅ ONNX Model loaded.")
|
| 140 |
-
|
| 141 |
-
if "optimized_model" not in st.session_state:
|
| 142 |
-
optimization_config = OptimizationConfig(optimization_level=99)
|
| 143 |
-
optimizer = ORTOptimizer.from_pretrained(HUB_MODEL_PATH, feature="sequence-classification")
|
| 144 |
-
if not OPTIMIZED_MODEL_PATH.exists():
|
| 145 |
-
optimizer.export(ONNX_MODEL_PATH, OPTIMIZED_MODEL_PATH, optimization_config=optimization_config)
|
| 146 |
-
optimizer.model.config.save_pretrained(OPTIMIZED_BASE_PATH)
|
| 147 |
-
optimized_model = ORTModelForSequenceClassification.from_pretrained(
|
| 148 |
-
OPTIMIZED_BASE_PATH, file_name=OPTIMIZED_MODEL_PATH.name
|
| 149 |
-
)
|
| 150 |
-
st.session_state["optimized_model"] = optimized_model
|
| 151 |
-
st.text("✅ Optimized ONNX model loaded.")
|
| 152 |
-
|
| 153 |
-
if "quantized_model" not in st.session_state:
|
| 154 |
-
quantization_config = AutoQuantizationConfig.arm64(is_static=False, per_channel=False)
|
| 155 |
-
quantizer = ORTQuantizer.from_pretrained(HUB_MODEL_PATH, feature="sequence-classification")
|
| 156 |
-
if not QUANTIZED_MODEL_PATH.exists():
|
| 157 |
-
quantizer.export(ONNX_MODEL_PATH, QUANTIZED_MODEL_PATH, quantization_config=quantization_config)
|
| 158 |
-
quantizer.model.config.save_pretrained(QUANTIZED_BASE_PATH)
|
| 159 |
-
quantized_model = ORTModelForSequenceClassification.from_pretrained(
|
| 160 |
-
QUANTIZED_BASE_PATH, file_name=QUANTIZED_MODEL_PATH.name
|
| 161 |
-
)
|
| 162 |
-
st.session_state["quantized_model"] = quantized_model
|
| 163 |
-
st.text("✅ Quantized ONNX model loaded.")
|
| 164 |
-
|
| 165 |
-
if "pt_pipeline" not in st.session_state:
|
| 166 |
-
pt_pipeline = pipeline(
|
| 167 |
-
"sentiment-analysis", tokenizer=st.session_state["tokenizer"], model=st.session_state["pt_model"]
|
| 168 |
-
)
|
| 169 |
-
st.session_state["pt_pipeline"] = pt_pipeline
|
| 170 |
-
|
| 171 |
-
if "ort_pipeline" not in st.session_state:
|
| 172 |
-
ort_pipeline = ort_pipeline(
|
| 173 |
-
"text-classification", tokenizer=st.session_state["tokenizer"], model=st.session_state["ort_model"]
|
| 174 |
-
)
|
| 175 |
-
st.session_state["ort_pipeline"] = ort_pipeline
|
| 176 |
-
|
| 177 |
-
if "ort_optimized_pipeline" not in st.session_state:
|
| 178 |
-
ort_optimized_pipeline = pipeline(
|
| 179 |
-
"text-classification",
|
| 180 |
-
tokenizer=st.session_state["tokenizer"],
|
| 181 |
-
model=st.session_state["optimized_model"],
|
| 182 |
-
)
|
| 183 |
-
st.session_state["ort_optimized_pipeline"] = ort_optimized_pipeline
|
| 184 |
-
|
| 185 |
-
if "ort_quantized_pipeline" not in st.session_state:
|
| 186 |
-
ort_quantized_pipeline = pipeline(
|
| 187 |
-
"text-classification",
|
| 188 |
-
tokenizer=st.session_state["tokenizer"],
|
| 189 |
-
model=st.session_state["quantized_model"],
|
| 190 |
-
)
|
| 191 |
-
st.session_state["ort_quantized_pipeline"] = ort_quantized_pipeline
|
| 192 |
-
|
| 193 |
-
st.text("✅ All pipelines are ready.")
|
| 194 |
sleep(2)
|
| 195 |
loading_logs.success("🎉 Everything is ready!")
|
| 196 |
st.session_state["init_models"] = False
|
|
|
|
| 18 |
|
| 19 |
from optimum.onnxruntime import ORTModelForSequenceClassification, ORTOptimizer, ORTQuantizer
|
| 20 |
from optimum.onnxruntime.configuration import OptimizationConfig, AutoQuantizationConfig
|
|
|
|
| 21 |
from optimum.pipelines import pipeline as ort_pipeline
|
| 22 |
from transformers import BertTokenizer, BertForSequenceClassification, pipeline
|
| 23 |
|
|
|
|
| 38 |
"ort_quantized_pipeline": "ONNXRuntime (Quantized)",
|
| 39 |
}
|
| 40 |
|
| 41 |
+
# Check if repositories exist, if not create them
|
| 42 |
+
BASE_PATH.mkdir(exist_ok=True)
|
| 43 |
+
QUANTIZED_BASE_PATH.mkdir(exist_ok=True)
|
| 44 |
+
OPTIMIZED_BASE_PATH.mkdir(exist_ok=True)
|
| 45 |
+
|
| 46 |
|
| 47 |
def get_timers(
|
| 48 |
samples: Union[List[str], str], exp_number: int, only_mean: bool = False
|
|
|
|
| 68 |
timers: Dict[str, float] = {}
|
| 69 |
for model in VAR2LABEL.keys():
|
| 70 |
time_buffer = []
|
| 71 |
+
st.session_state["pipeline"] = load_pipeline(model)
|
| 72 |
for _ in range(exp_number):
|
| 73 |
with calculate_inference_time(time_buffer):
|
| 74 |
+
st.session_state["pipeline"](samples)
|
| 75 |
timers[VAR2LABEL[model]] = np.mean(time_buffer) if only_mean else time_buffer
|
| 76 |
return timers
|
| 77 |
|
|
|
|
| 92 |
)
|
| 93 |
fig.update_layout(title_text="Inference Time", xaxis_title="Inference Time (s)", yaxis_title="Number of Samples")
|
| 94 |
return fig
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def load_pipeline(pipeline_name: str) -> None:
|
| 98 |
+
"""
|
| 99 |
+
Load a pipeline for a given model.
|
| 100 |
+
|
| 101 |
+
Parameters
|
| 102 |
+
----------
|
| 103 |
+
pipeline_name : str
|
| 104 |
+
Name of the pipeline to load.
|
| 105 |
+
"""
|
| 106 |
+
if pipeline_name == "pt_pipeline":
|
| 107 |
+
model = BertForSequenceClassification.from_pretrained(HUB_MODEL_PATH, num_labels=3)
|
| 108 |
+
pipeline = pipeline("sentiment-analysis", tokenizer=st.session_state["tokenizer"], model=model)
|
| 109 |
+
elif pipeline_name == "ort_pipeline":
|
| 110 |
+
model = ORTModelForSequenceClassification.from_pretrained(HUB_MODEL_PATH, from_transformers=True)
|
| 111 |
+
if not ONNX_MODEL_PATH.exists():
|
| 112 |
+
model.save_pretrained(ONNX_MODEL_PATH)
|
| 113 |
+
pipeline = ort_pipeline("text-classification", tokenizer=st.session_state["tokenizer"], model=model)
|
| 114 |
+
elif pipeline_name == "ort_optimized_pipeline":
|
| 115 |
+
if not OPTIMIZED_MODEL_PATH.exists():
|
| 116 |
+
optimization_config = OptimizationConfig(optimization_level=99)
|
| 117 |
+
optimizer = ORTOptimizer.from_pretrained(HUB_MODEL_PATH, feature="sequence-classification")
|
| 118 |
+
optimizer.export(ONNX_MODEL_PATH, OPTIMIZED_MODEL_PATH, optimization_config=optimization_config)
|
| 119 |
+
optimizer.model.config.save_pretrained(OPTIMIZED_BASE_PATH)
|
| 120 |
+
model = ORTModelForSequenceClassification.from_pretrained(
|
| 121 |
+
OPTIMIZED_BASE_PATH, file_name=OPTIMIZED_MODEL_PATH.name
|
| 122 |
+
)
|
| 123 |
+
pipeline = pipeline("text-classification", tokenizer=st.session_state["tokenizer"], model=model)
|
| 124 |
+
elif pipeline_name == "ort_quantized_pipeline":
|
| 125 |
+
if not QUANTIZED_MODEL_PATH.exists():
|
| 126 |
+
quantization_config = AutoQuantizationConfig.arm64(is_static=False, per_channel=False)
|
| 127 |
+
quantizer = ORTQuantizer.from_pretrained(HUB_MODEL_PATH, feature="sequence-classification")
|
| 128 |
+
quantizer.export(ONNX_MODEL_PATH, QUANTIZED_MODEL_PATH, quantization_config=quantization_config)
|
| 129 |
+
quantizer.model.config.save_pretrained(QUANTIZED_BASE_PATH)
|
| 130 |
+
model = ORTModelForSequenceClassification.from_pretrained(
|
| 131 |
+
QUANTIZED_BASE_PATH, file_name=QUANTIZED_MODEL_PATH.name
|
| 132 |
+
)
|
| 133 |
+
pipeline = pipeline("text-classification", tokenizer=st.session_state["tokenizer"], model=model)
|
| 134 |
+
print(type(pipeline))
|
| 135 |
+
return pipeline
|
| 136 |
|
| 137 |
|
| 138 |
st.set_page_config(page_title="Optimum Text Classification", page_icon="⭐")
|
|
|
|
| 171 |
tokenizer = BertTokenizer.from_pretrained(HUB_MODEL_PATH)
|
| 172 |
st.session_state["tokenizer"] = tokenizer
|
| 173 |
st.text("✅ Tokenizer loaded.")
|
| 174 |
+
if "pipeline" not in st.session_state:
|
| 175 |
+
for pipeline in VAR2LABEL.keys():
|
| 176 |
+
st.session_state["pipeline"] = load_pipeline(pipeline)
|
| 177 |
+
st.text("✅ Models ready.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
sleep(2)
|
| 179 |
loading_logs.success("🎉 Everything is ready!")
|
| 180 |
st.session_state["init_models"] = False
|