Spaces:
Runtime error
Runtime error
Hoang Kha
commited on
Commit
·
0514b67
1
Parent(s):
1482be8
Fix huggingface cache to /data for permission issues
Browse files- Dockerfile +3 -3
- main.py +250 -117
Dockerfile
CHANGED
|
@@ -9,8 +9,8 @@ RUN pip install --no-cache-dir -r requirements.txt
|
|
| 9 |
|
| 10 |
EXPOSE 7860
|
| 11 |
|
| 12 |
-
ENV
|
| 13 |
-
ENV
|
| 14 |
-
|
| 15 |
|
| 16 |
CMD ["python", "main.py"]
|
|
|
|
| 9 |
|
| 10 |
EXPOSE 7860
|
| 11 |
|
| 12 |
+
ENV HF_HUB_DISABLE_CACHE=1
|
| 13 |
+
ENV HF_HUB_DISABLE_SYMLINKS_WARNING=1
|
| 14 |
+
ENV TRANSFORMERS_OFFLINE=0
|
| 15 |
|
| 16 |
CMD ["python", "main.py"]
|
main.py
CHANGED
|
@@ -1,15 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
from flask import Flask, render_template, request, jsonify
|
| 3 |
from langdetect import detect
|
| 4 |
import torch
|
| 5 |
import torch.nn.functional as F
|
| 6 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
os.
|
|
|
|
| 10 |
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
|
| 11 |
os.environ["TRANSFORMERS_OFFLINE"] = "0"
|
| 12 |
-
os.environ["
|
|
|
|
| 13 |
|
| 14 |
app = Flask(__name__)
|
| 15 |
|
|
@@ -19,47 +220,38 @@ EN_MODEL_NAME = "distilbert-base-uncased-finetuned-sst-2-english"
|
|
| 19 |
|
| 20 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
# sentiment_pipeline = pipeline("sentiment-analysis", model=vi_model, tokenizer=vi_tokenizer)
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
# # English model
|
| 33 |
-
# en_tokenizer = AutoTokenizer.from_pretrained(EN_MODEL_NAME)
|
| 34 |
-
# en_model = AutoModelForSequenceClassification.from_pretrained(EN_MODEL_NAME).to(device)
|
| 35 |
-
# en_model.eval()
|
| 36 |
-
|
| 37 |
-
print("🔄 Loading Vietnamese model from Hugging Face Hub (no cache)...")
|
| 38 |
-
vi_tokenizer = AutoTokenizer.from_pretrained(VI_MODEL_NAME, use_fast=False, local_files_only=False)
|
| 39 |
-
vi_model = AutoModelForSequenceClassification.from_pretrained(VI_MODEL_NAME, local_files_only=False)
|
| 40 |
vi_model.eval()
|
| 41 |
sentiment_pipeline = pipeline("sentiment-analysis", model=vi_model, tokenizer=vi_tokenizer)
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
en_model.eval()
|
| 47 |
-
|
| 48 |
-
vi_label_map = {
|
| 49 |
-
0: ("NEGATIVE", "Tiêu cực"),
|
| 50 |
-
1: ("NEUTRAL", "Trung tính"),
|
| 51 |
-
2: ("POSITIVE", "Tích cực")
|
| 52 |
-
}
|
| 53 |
|
| 54 |
-
#
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
| 58 |
}
|
| 59 |
|
| 60 |
-
|
| 61 |
# -----------------------------
|
| 62 |
-
#
|
| 63 |
# -----------------------------
|
| 64 |
def detect_lang(text: str) -> str:
|
| 65 |
try:
|
|
@@ -68,99 +260,50 @@ def detect_lang(text: str) -> str:
|
|
| 68 |
return "vi"
|
| 69 |
elif lang.startswith("en"):
|
| 70 |
return "en"
|
| 71 |
-
else:
|
| 72 |
-
if any(ch in text for ch in "ăâđêôơưáàạảãấầậẩẫắằặẳẵéèẹẻẽếềệểễóòọỏõốồộổỗớờợởỡíìịỉĩúùụủũứừựửữýỳỵỷỹ"):
|
| 73 |
-
return "vi"
|
| 74 |
-
return "en"
|
| 75 |
except Exception:
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
return "
|
| 79 |
-
|
| 80 |
|
| 81 |
# -----------------------------
|
| 82 |
-
#
|
| 83 |
# -----------------------------
|
| 84 |
-
# def analyze_vi(text: str):
|
| 85 |
-
# inputs = vi_tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
|
| 86 |
-
# with torch.no_grad():
|
| 87 |
-
# outputs = vi_model(**inputs)
|
| 88 |
-
# logits = outputs.logits.squeeze(0)
|
| 89 |
-
# probs = torch.softmax(logits, dim=-1)
|
| 90 |
-
|
| 91 |
-
# label_idx = int(torch.argmax(probs).item())
|
| 92 |
-
# eng_label, vi_label = vi_label_map[label_idx]
|
| 93 |
-
# confidence = float(probs[label_idx].item())
|
| 94 |
-
|
| 95 |
-
# scores = {
|
| 96 |
-
# vi_label_map[i][1]: round(float(probs[i].item()), 3) for i in range(3)
|
| 97 |
-
# }
|
| 98 |
-
|
| 99 |
-
# return {
|
| 100 |
-
# "language": "vi",
|
| 101 |
-
# "label": vi_label,
|
| 102 |
-
# "english_label": eng_label,
|
| 103 |
-
# "score": round(confidence, 3),
|
| 104 |
-
# "scores": scores
|
| 105 |
-
# }
|
| 106 |
-
|
| 107 |
def analyze_vi(text: str):
|
| 108 |
if not text.strip():
|
| 109 |
-
return {"error": "
|
| 110 |
-
|
| 111 |
-
# Dùng pipeline của transformers
|
| 112 |
result = sentiment_pipeline(text)[0]
|
| 113 |
label = result["label"]
|
| 114 |
score = round(result["score"], 3)
|
| 115 |
-
|
| 116 |
-
# Map nhãn tiếng Việt
|
| 117 |
-
label_map = {
|
| 118 |
-
"POS": "Tích cực",
|
| 119 |
-
"NEG": "Tiêu cực",
|
| 120 |
-
"NEU": "Trung tính"
|
| 121 |
-
}
|
| 122 |
-
|
| 123 |
-
vi_label = label_map.get(label, label)
|
| 124 |
-
|
| 125 |
-
# Trả kết quả tương thích với frontend
|
| 126 |
return {
|
| 127 |
"language": "vi",
|
| 128 |
-
"label":
|
| 129 |
-
"english_label": label,
|
| 130 |
"score": score,
|
| 131 |
"scores": {
|
| 132 |
"Tích cực": score if label == "POS" else 0.0,
|
| 133 |
"Trung tính": score if label == "NEU" else 0.0,
|
| 134 |
-
"Tiêu cực": score if label == "NEG" else 0.0
|
| 135 |
-
}
|
| 136 |
}
|
|
|
|
| 137 |
# -----------------------------
|
| 138 |
-
#
|
| 139 |
# -----------------------------
|
| 140 |
def analyze_en(text: str):
|
| 141 |
inputs = en_tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
|
| 142 |
with torch.no_grad():
|
| 143 |
-
|
| 144 |
-
logits = outputs.logits.squeeze(0)
|
| 145 |
probs = torch.softmax(logits, dim=-1)
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
eng_label, vi_label = en_label_map[label_idx]
|
| 149 |
-
confidence = float(probs[label_idx].item())
|
| 150 |
-
|
| 151 |
-
scores = {
|
| 152 |
-
en_label_map[i][1]: round(float(probs[i].item()), 3) for i in range(2)
|
| 153 |
-
}
|
| 154 |
-
|
| 155 |
return {
|
| 156 |
"language": "en",
|
| 157 |
-
"label":
|
| 158 |
-
"
|
| 159 |
-
"
|
| 160 |
-
"scores": scores
|
| 161 |
}
|
| 162 |
|
| 163 |
-
|
| 164 |
# -----------------------------
|
| 165 |
# Flask routes
|
| 166 |
# -----------------------------
|
|
@@ -168,7 +311,6 @@ def analyze_en(text: str):
|
|
| 168 |
def home():
|
| 169 |
return render_template("index.html")
|
| 170 |
|
| 171 |
-
|
| 172 |
@app.route("/analyze", methods=["POST"])
|
| 173 |
def analyze():
|
| 174 |
data = request.get_json(force=True)
|
|
@@ -180,17 +322,8 @@ def analyze():
|
|
| 180 |
if lang == "auto":
|
| 181 |
lang = detect_lang(text)
|
| 182 |
|
| 183 |
-
if lang == "vi"
|
| 184 |
-
|
| 185 |
-
else:
|
| 186 |
-
result = analyze_en(text)
|
| 187 |
-
|
| 188 |
-
return jsonify({
|
| 189 |
-
"ok": True,
|
| 190 |
-
"input": {"text": text, "lang": lang},
|
| 191 |
-
"result": result
|
| 192 |
-
})
|
| 193 |
-
|
| 194 |
|
| 195 |
if __name__ == "__main__":
|
| 196 |
port = int(os.environ.get("PORT", 7860))
|
|
|
|
| 1 |
+
# import os
|
| 2 |
+
# from flask import Flask, render_template, request, jsonify
|
| 3 |
+
# from langdetect import detect
|
| 4 |
+
# import torch
|
| 5 |
+
# import torch.nn.functional as F
|
| 6 |
+
# from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
| 7 |
+
# os.environ["HF_HOME"] = "/data/huggingface"
|
| 8 |
+
# os.environ["TRANSFORMERS_CACHE"] = "/data/huggingface"
|
| 9 |
+
# os.makedirs("/data/huggingface", exist_ok=True)
|
| 10 |
+
# os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
|
| 11 |
+
# os.environ["TRANSFORMERS_OFFLINE"] = "0"
|
| 12 |
+
# os.environ["HF_HUB_DISABLE_CACHE"] = "1"
|
| 13 |
+
|
| 14 |
+
# app = Flask(__name__)
|
| 15 |
+
|
| 16 |
+
# # --------- Models ----------
|
| 17 |
+
# VI_MODEL_NAME = "wonrax/phobert-base-vietnamese-sentiment"
|
| 18 |
+
# EN_MODEL_NAME = "distilbert-base-uncased-finetuned-sst-2-english"
|
| 19 |
+
|
| 20 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 21 |
+
|
| 22 |
+
# # Vietnamese model
|
| 23 |
+
# # vi_tokenizer = AutoTokenizer.from_pretrained(VI_MODEL_NAME, use_fast=False)
|
| 24 |
+
# # vi_model = AutoModelForSequenceClassification.from_pretrained(VI_MODEL_NAME).to(device)
|
| 25 |
+
# # vi_model.eval()
|
| 26 |
+
# # vi_tokenizer = AutoTokenizer.from_pretrained(VI_MODEL_NAME, use_fast=False)
|
| 27 |
+
# # vi_model = AutoModelForSequenceClassification.from_pretrained(VI_MODEL_NAME)
|
| 28 |
+
# # vi_model.eval()
|
| 29 |
+
# # sentiment_pipeline = pipeline("sentiment-analysis", model=vi_model, tokenizer=vi_tokenizer)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
# # # English model
|
| 33 |
+
# # en_tokenizer = AutoTokenizer.from_pretrained(EN_MODEL_NAME)
|
| 34 |
+
# # en_model = AutoModelForSequenceClassification.from_pretrained(EN_MODEL_NAME).to(device)
|
| 35 |
+
# # en_model.eval()
|
| 36 |
+
|
| 37 |
+
# print("Loading Vietnamese model from Hugging Face Hub (no cache)...")
|
| 38 |
+
# vi_tokenizer = AutoTokenizer.from_pretrained(VI_MODEL_NAME, use_fast=False, local_files_only=False)
|
| 39 |
+
# vi_model = AutoModelForSequenceClassification.from_pretrained(VI_MODEL_NAME, local_files_only=False)
|
| 40 |
+
# vi_model.eval()
|
| 41 |
+
# sentiment_pipeline = pipeline("sentiment-analysis", model=vi_model, tokenizer=vi_tokenizer)
|
| 42 |
+
|
| 43 |
+
# print("Loading English model from Hugging Face Hub (no cache)...")
|
| 44 |
+
# en_tokenizer = AutoTokenizer.from_pretrained(EN_MODEL_NAME, local_files_only=False)
|
| 45 |
+
# en_model = AutoModelForSequenceClassification.from_pretrained(EN_MODEL_NAME, local_files_only=False)
|
| 46 |
+
# en_model.eval()
|
| 47 |
+
# # Label mapping cho PhoBERT
|
| 48 |
+
# vi_label_map = {
|
| 49 |
+
# 0: ("NEGATIVE", "Tiêu cực"),
|
| 50 |
+
# 1: ("NEUTRAL", "Trung tính"),
|
| 51 |
+
# 2: ("POSITIVE", "Tích cực")
|
| 52 |
+
# }
|
| 53 |
+
|
| 54 |
+
# # Label mapping cho tiếng Anh
|
| 55 |
+
# en_label_map = {
|
| 56 |
+
# 0: ("NEGATIVE", "Negative"),
|
| 57 |
+
# 1: ("POSITIVE", "Positive")
|
| 58 |
+
# }
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
# # -----------------------------
|
| 62 |
+
# # Ngôn ngữ nhận diện
|
| 63 |
+
# # -----------------------------
|
| 64 |
+
# def detect_lang(text: str) -> str:
|
| 65 |
+
# try:
|
| 66 |
+
# lang = detect(text)
|
| 67 |
+
# if lang.startswith("vi"):
|
| 68 |
+
# return "vi"
|
| 69 |
+
# elif lang.startswith("en"):
|
| 70 |
+
# return "en"
|
| 71 |
+
# else:
|
| 72 |
+
# if any(ch in text for ch in "ăâđêôơưáàạảãấầậẩẫắằặẳẵéèẹẻẽếềệểễóòọỏõốồộổỗớờợởỡíìịỉĩúùụủũứừựửữýỳỵỷỹ"):
|
| 73 |
+
# return "vi"
|
| 74 |
+
# return "en"
|
| 75 |
+
# except Exception:
|
| 76 |
+
# if any(ch in text for ch in "ăâđêôơưáàạảãấầậẩẫắằặẳẵéèẹẻẽếềệểễóòọỏõốồộổỗớờợởỡíìịỉĩúùụủũứừựửữýỳỵỷỹ"):
|
| 77 |
+
# return "vi"
|
| 78 |
+
# return "en"
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
# # -----------------------------
|
| 82 |
+
# # Phân tích tiếng Việt (PhoBERT)
|
| 83 |
+
# # -----------------------------
|
| 84 |
+
# # def analyze_vi(text: str):
|
| 85 |
+
# # inputs = vi_tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
|
| 86 |
+
# # with torch.no_grad():
|
| 87 |
+
# # outputs = vi_model(**inputs)
|
| 88 |
+
# # logits = outputs.logits.squeeze(0)
|
| 89 |
+
# # probs = torch.softmax(logits, dim=-1)
|
| 90 |
+
|
| 91 |
+
# # label_idx = int(torch.argmax(probs).item())
|
| 92 |
+
# # eng_label, vi_label = vi_label_map[label_idx]
|
| 93 |
+
# # confidence = float(probs[label_idx].item())
|
| 94 |
+
|
| 95 |
+
# # scores = {
|
| 96 |
+
# # vi_label_map[i][1]: round(float(probs[i].item()), 3) for i in range(3)
|
| 97 |
+
# # }
|
| 98 |
+
|
| 99 |
+
# # return {
|
| 100 |
+
# # "language": "vi",
|
| 101 |
+
# # "label": vi_label,
|
| 102 |
+
# # "english_label": eng_label,
|
| 103 |
+
# # "score": round(confidence, 3),
|
| 104 |
+
# # "scores": scores
|
| 105 |
+
# # }
|
| 106 |
+
|
| 107 |
+
# def analyze_vi(text: str):
|
| 108 |
+
# if not text.strip():
|
| 109 |
+
# return {"error": "Text is empty."}
|
| 110 |
+
|
| 111 |
+
# # Dùng pipeline của transformers
|
| 112 |
+
# result = sentiment_pipeline(text)[0]
|
| 113 |
+
# label = result["label"]
|
| 114 |
+
# score = round(result["score"], 3)
|
| 115 |
+
|
| 116 |
+
# # Map nhãn tiếng Việt
|
| 117 |
+
# label_map = {
|
| 118 |
+
# "POS": "Tích cực",
|
| 119 |
+
# "NEG": "Tiêu cực",
|
| 120 |
+
# "NEU": "Trung tính"
|
| 121 |
+
# }
|
| 122 |
+
|
| 123 |
+
# vi_label = label_map.get(label, label)
|
| 124 |
+
|
| 125 |
+
# # Trả kết quả tương thích với frontend
|
| 126 |
+
# return {
|
| 127 |
+
# "language": "vi",
|
| 128 |
+
# "label": vi_label,
|
| 129 |
+
# "english_label": label, # Giữ nhãn gốc POS/NEG/NEU
|
| 130 |
+
# "score": score,
|
| 131 |
+
# "scores": {
|
| 132 |
+
# "Tích cực": score if label == "POS" else 0.0,
|
| 133 |
+
# "Trung tính": score if label == "NEU" else 0.0,
|
| 134 |
+
# "Tiêu cực": score if label == "NEG" else 0.0
|
| 135 |
+
# }
|
| 136 |
+
# }
|
| 137 |
+
# # -----------------------------
|
| 138 |
+
# # Phân tích tiếng Anh
|
| 139 |
+
# # -----------------------------
|
| 140 |
+
# def analyze_en(text: str):
|
| 141 |
+
# inputs = en_tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
|
| 142 |
+
# with torch.no_grad():
|
| 143 |
+
# outputs = en_model(**inputs)
|
| 144 |
+
# logits = outputs.logits.squeeze(0)
|
| 145 |
+
# probs = torch.softmax(logits, dim=-1)
|
| 146 |
+
|
| 147 |
+
# label_idx = int(torch.argmax(probs).item())
|
| 148 |
+
# eng_label, vi_label = en_label_map[label_idx]
|
| 149 |
+
# confidence = float(probs[label_idx].item())
|
| 150 |
+
|
| 151 |
+
# scores = {
|
| 152 |
+
# en_label_map[i][1]: round(float(probs[i].item()), 3) for i in range(2)
|
| 153 |
+
# }
|
| 154 |
+
|
| 155 |
+
# return {
|
| 156 |
+
# "language": "en",
|
| 157 |
+
# "label": vi_label, # Giữ English, có thể đổi sang tiếng Việt nếu muốn
|
| 158 |
+
# "english_label": eng_label,
|
| 159 |
+
# "score": round(confidence, 3),
|
| 160 |
+
# "scores": scores
|
| 161 |
+
# }
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
# # -----------------------------
|
| 165 |
+
# # Flask routes
|
| 166 |
+
# # -----------------------------
|
| 167 |
+
# @app.route("/", methods=["GET"])
|
| 168 |
+
# def home():
|
| 169 |
+
# return render_template("index.html")
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
# @app.route("/analyze", methods=["POST"])
|
| 173 |
+
# def analyze():
|
| 174 |
+
# data = request.get_json(force=True)
|
| 175 |
+
# text = (data.get("text") or "").strip()
|
| 176 |
+
# lang = (data.get("lang") or "auto").lower()
|
| 177 |
+
# if not text:
|
| 178 |
+
# return jsonify({"error": "Text is empty."}), 400
|
| 179 |
+
|
| 180 |
+
# if lang == "auto":
|
| 181 |
+
# lang = detect_lang(text)
|
| 182 |
+
|
| 183 |
+
# if lang == "vi":
|
| 184 |
+
# result = analyze_vi(text)
|
| 185 |
+
# else:
|
| 186 |
+
# result = analyze_en(text)
|
| 187 |
+
|
| 188 |
+
# return jsonify({
|
| 189 |
+
# "ok": True,
|
| 190 |
+
# "input": {"text": text, "lang": lang},
|
| 191 |
+
# "result": result
|
| 192 |
+
# })
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
# if __name__ == "__main__":
|
| 196 |
+
# port = int(os.environ.get("PORT", 7860))
|
| 197 |
+
# app.run(host="0.0.0.0", port=port)
|
| 198 |
+
|
| 199 |
+
|
| 200 |
import os
|
| 201 |
from flask import Flask, render_template, request, jsonify
|
| 202 |
from langdetect import detect
|
| 203 |
import torch
|
| 204 |
import torch.nn.functional as F
|
| 205 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
| 206 |
+
|
| 207 |
+
# ✅ Tắt toàn bộ cache và ghi đĩa
|
| 208 |
+
os.environ["HF_HUB_DISABLE_CACHE"] = "1"
|
| 209 |
+
os.environ["HF_HUB_DISABLE_PROGRESS_BARS"] = "1"
|
| 210 |
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
|
| 211 |
os.environ["TRANSFORMERS_OFFLINE"] = "0"
|
| 212 |
+
os.environ["HF_DATASETS_OFFLINE"] = "1"
|
| 213 |
+
os.environ["DISABLE_TELEMETRY"] = "1"
|
| 214 |
|
| 215 |
app = Flask(__name__)
|
| 216 |
|
|
|
|
| 220 |
|
| 221 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 222 |
|
| 223 |
+
print("🔄 Loading Vietnamese model (memory-only mode)...")
|
| 224 |
+
vi_tokenizer = AutoTokenizer.from_pretrained(
|
| 225 |
+
VI_MODEL_NAME, use_fast=False, cache_dir=None, local_files_only=False
|
| 226 |
+
)
|
| 227 |
+
vi_model = AutoModelForSequenceClassification.from_pretrained(
|
| 228 |
+
VI_MODEL_NAME, cache_dir=None, local_files_only=False
|
| 229 |
+
).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
vi_model.eval()
|
| 231 |
sentiment_pipeline = pipeline("sentiment-analysis", model=vi_model, tokenizer=vi_tokenizer)
|
| 232 |
+
print("✅ Vietnamese model loaded!")
|
| 233 |
+
|
| 234 |
+
print("🔄 Loading English model (memory-only mode)...")
|
| 235 |
+
en_tokenizer = AutoTokenizer.from_pretrained(
|
| 236 |
+
EN_MODEL_NAME, cache_dir=None, local_files_only=False
|
| 237 |
+
)
|
| 238 |
+
en_model = AutoModelForSequenceClassification.from_pretrained(
|
| 239 |
+
EN_MODEL_NAME, cache_dir=None, local_files_only=False
|
| 240 |
+
).to(device)
|
| 241 |
en_model.eval()
|
| 242 |
+
print("✅ English model loaded!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 243 |
|
| 244 |
+
# -----------------------------
|
| 245 |
+
# Label mapping
|
| 246 |
+
# -----------------------------
|
| 247 |
+
vi_label_map = {
|
| 248 |
+
"POS": "Tích cực",
|
| 249 |
+
"NEG": "Tiêu cực",
|
| 250 |
+
"NEU": "Trung tính"
|
| 251 |
}
|
| 252 |
|
|
|
|
| 253 |
# -----------------------------
|
| 254 |
+
# Language detection
|
| 255 |
# -----------------------------
|
| 256 |
def detect_lang(text: str) -> str:
|
| 257 |
try:
|
|
|
|
| 260 |
return "vi"
|
| 261 |
elif lang.startswith("en"):
|
| 262 |
return "en"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
except Exception:
|
| 264 |
+
pass
|
| 265 |
+
if any(ch in text for ch in "ăâđêôơưáàạảãấầậẩẫắằặẳẵéèẹẻẽếềệểễóòọỏõốồộổỗớờợởỡíìịỉĩúùụủũứừựửữýỳỵỷỹ"):
|
| 266 |
+
return "vi"
|
| 267 |
+
return "en"
|
| 268 |
|
| 269 |
# -----------------------------
|
| 270 |
+
# Vietnamese analysis
|
| 271 |
# -----------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
def analyze_vi(text: str):
|
| 273 |
if not text.strip():
|
| 274 |
+
return {"error": "Empty text."}
|
|
|
|
|
|
|
| 275 |
result = sentiment_pipeline(text)[0]
|
| 276 |
label = result["label"]
|
| 277 |
score = round(result["score"], 3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 278 |
return {
|
| 279 |
"language": "vi",
|
| 280 |
+
"label": vi_label_map.get(label, label),
|
| 281 |
+
"english_label": label,
|
| 282 |
"score": score,
|
| 283 |
"scores": {
|
| 284 |
"Tích cực": score if label == "POS" else 0.0,
|
| 285 |
"Trung tính": score if label == "NEU" else 0.0,
|
| 286 |
+
"Tiêu cực": score if label == "NEG" else 0.0,
|
| 287 |
+
},
|
| 288 |
}
|
| 289 |
+
|
| 290 |
# -----------------------------
|
| 291 |
+
# English analysis
|
| 292 |
# -----------------------------
|
| 293 |
def analyze_en(text: str):
|
| 294 |
inputs = en_tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
|
| 295 |
with torch.no_grad():
|
| 296 |
+
logits = en_model(**inputs).logits.squeeze(0)
|
|
|
|
| 297 |
probs = torch.softmax(logits, dim=-1)
|
| 298 |
+
label_idx = int(torch.argmax(probs))
|
| 299 |
+
labels = ["Negative", "Positive"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 300 |
return {
|
| 301 |
"language": "en",
|
| 302 |
+
"label": labels[label_idx],
|
| 303 |
+
"score": round(float(probs[label_idx]), 3),
|
| 304 |
+
"scores": {labels[i]: round(float(probs[i]), 3) for i in range(2)},
|
|
|
|
| 305 |
}
|
| 306 |
|
|
|
|
| 307 |
# -----------------------------
|
| 308 |
# Flask routes
|
| 309 |
# -----------------------------
|
|
|
|
| 311 |
def home():
|
| 312 |
return render_template("index.html")
|
| 313 |
|
|
|
|
| 314 |
@app.route("/analyze", methods=["POST"])
|
| 315 |
def analyze():
|
| 316 |
data = request.get_json(force=True)
|
|
|
|
| 322 |
if lang == "auto":
|
| 323 |
lang = detect_lang(text)
|
| 324 |
|
| 325 |
+
result = analyze_vi(text) if lang == "vi" else analyze_en(text)
|
| 326 |
+
return jsonify({"ok": True, "input": {"text": text, "lang": lang}, "result": result})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 327 |
|
| 328 |
if __name__ == "__main__":
|
| 329 |
port = int(os.environ.get("PORT", 7860))
|