Spaces:
Runtime error
Runtime error
Hoang Kha
commited on
Commit
·
2a8d890
1
Parent(s):
1ba8a76
upload source
Browse files- Dockerfile +12 -0
- main.py +181 -0
- requirements.txt +6 -0
- static/main.js +88 -0
- static/style.css +117 -0
- templates/index.html +87 -0
Dockerfile
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.10-slim
|
| 2 |
+
|
| 3 |
+
RUN apt-get update && apt-get install -y git
|
| 4 |
+
|
| 5 |
+
WORKDIR /app
|
| 6 |
+
COPY . /app
|
| 7 |
+
|
| 8 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 9 |
+
|
| 10 |
+
EXPOSE 7860
|
| 11 |
+
|
| 12 |
+
CMD ["python", "main.py"]
|
main.py
ADDED
|
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from flask import Flask, render_template, request, jsonify
|
| 3 |
+
from langdetect import detect
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
| 7 |
+
|
| 8 |
+
app = Flask(__name__)
|
| 9 |
+
|
| 10 |
+
# --------- Models ----------
|
| 11 |
+
VI_MODEL_NAME = "wonrax/phobert-base-vietnamese-sentiment"
|
| 12 |
+
EN_MODEL_NAME = "distilbert-base-uncased-finetuned-sst-2-english"
|
| 13 |
+
|
| 14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
+
|
| 16 |
+
# Vietnamese model
|
| 17 |
+
# vi_tokenizer = AutoTokenizer.from_pretrained(VI_MODEL_NAME, use_fast=False)
|
| 18 |
+
# vi_model = AutoModelForSequenceClassification.from_pretrained(VI_MODEL_NAME).to(device)
|
| 19 |
+
# vi_model.eval()
|
| 20 |
+
vi_tokenizer = AutoTokenizer.from_pretrained(VI_MODEL_NAME, use_fast=False)
|
| 21 |
+
vi_model = AutoModelForSequenceClassification.from_pretrained(VI_MODEL_NAME)
|
| 22 |
+
vi_model.eval()
|
| 23 |
+
sentiment_pipeline = pipeline("sentiment-analysis", model=vi_model, tokenizer=vi_tokenizer)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
# English model
|
| 27 |
+
en_tokenizer = AutoTokenizer.from_pretrained(EN_MODEL_NAME)
|
| 28 |
+
en_model = AutoModelForSequenceClassification.from_pretrained(EN_MODEL_NAME).to(device)
|
| 29 |
+
en_model.eval()
|
| 30 |
+
|
| 31 |
+
# Label mapping cho PhoBERT
|
| 32 |
+
vi_label_map = {
|
| 33 |
+
0: ("NEGATIVE", "Tiêu cực"),
|
| 34 |
+
1: ("NEUTRAL", "Trung tính"),
|
| 35 |
+
2: ("POSITIVE", "Tích cực")
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
+
# Label mapping cho tiếng Anh
|
| 39 |
+
en_label_map = {
|
| 40 |
+
0: ("NEGATIVE", "Negative"),
|
| 41 |
+
1: ("POSITIVE", "Positive")
|
| 42 |
+
}
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
# -----------------------------
|
| 46 |
+
# Ngôn ngữ nhận diện
|
| 47 |
+
# -----------------------------
|
| 48 |
+
def detect_lang(text: str) -> str:
|
| 49 |
+
try:
|
| 50 |
+
lang = detect(text)
|
| 51 |
+
if lang.startswith("vi"):
|
| 52 |
+
return "vi"
|
| 53 |
+
elif lang.startswith("en"):
|
| 54 |
+
return "en"
|
| 55 |
+
else:
|
| 56 |
+
if any(ch in text for ch in "ăâđêôơưáàạảãấầậẩẫắằặẳẵéèẹẻẽếềệểễóòọỏõốồộổỗớờợởỡíìịỉĩúùụủũứừựửữýỳỵỷỹ"):
|
| 57 |
+
return "vi"
|
| 58 |
+
return "en"
|
| 59 |
+
except Exception:
|
| 60 |
+
if any(ch in text for ch in "ăâđêôơưáàạảãấầậẩẫắằặẳẵéèẹẻẽếềệểễóòọỏõốồộổỗớờợởỡíìịỉĩúùụủũứừựửữýỳỵỷỹ"):
|
| 61 |
+
return "vi"
|
| 62 |
+
return "en"
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
# -----------------------------
|
| 66 |
+
# Phân tích tiếng Việt (PhoBERT)
|
| 67 |
+
# -----------------------------
|
| 68 |
+
# def analyze_vi(text: str):
|
| 69 |
+
# inputs = vi_tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
|
| 70 |
+
# with torch.no_grad():
|
| 71 |
+
# outputs = vi_model(**inputs)
|
| 72 |
+
# logits = outputs.logits.squeeze(0)
|
| 73 |
+
# probs = torch.softmax(logits, dim=-1)
|
| 74 |
+
|
| 75 |
+
# label_idx = int(torch.argmax(probs).item())
|
| 76 |
+
# eng_label, vi_label = vi_label_map[label_idx]
|
| 77 |
+
# confidence = float(probs[label_idx].item())
|
| 78 |
+
|
| 79 |
+
# scores = {
|
| 80 |
+
# vi_label_map[i][1]: round(float(probs[i].item()), 3) for i in range(3)
|
| 81 |
+
# }
|
| 82 |
+
|
| 83 |
+
# return {
|
| 84 |
+
# "language": "vi",
|
| 85 |
+
# "label": vi_label,
|
| 86 |
+
# "english_label": eng_label,
|
| 87 |
+
# "score": round(confidence, 3),
|
| 88 |
+
# "scores": scores
|
| 89 |
+
# }
|
| 90 |
+
|
| 91 |
+
def analyze_vi(text: str):
|
| 92 |
+
if not text.strip():
|
| 93 |
+
return {"error": "Text is empty."}
|
| 94 |
+
|
| 95 |
+
# Dùng pipeline của transformers
|
| 96 |
+
result = sentiment_pipeline(text)[0]
|
| 97 |
+
label = result["label"]
|
| 98 |
+
score = round(result["score"], 3)
|
| 99 |
+
|
| 100 |
+
# Map nhãn tiếng Việt
|
| 101 |
+
label_map = {
|
| 102 |
+
"POS": "Tích cực",
|
| 103 |
+
"NEG": "Tiêu cực",
|
| 104 |
+
"NEU": "Trung tính"
|
| 105 |
+
}
|
| 106 |
+
|
| 107 |
+
vi_label = label_map.get(label, label)
|
| 108 |
+
|
| 109 |
+
# Trả kết quả tương thích với frontend
|
| 110 |
+
return {
|
| 111 |
+
"language": "vi",
|
| 112 |
+
"label": vi_label,
|
| 113 |
+
"english_label": label, # Giữ nhãn gốc POS/NEG/NEU
|
| 114 |
+
"score": score,
|
| 115 |
+
"scores": {
|
| 116 |
+
"Tích cực": score if label == "POS" else 0.0,
|
| 117 |
+
"Trung tính": score if label == "NEU" else 0.0,
|
| 118 |
+
"Tiêu cực": score if label == "NEG" else 0.0
|
| 119 |
+
}
|
| 120 |
+
}
|
| 121 |
+
# -----------------------------
|
| 122 |
+
# Phân tích tiếng Anh
|
| 123 |
+
# -----------------------------
|
| 124 |
+
def analyze_en(text: str):
|
| 125 |
+
inputs = en_tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
|
| 126 |
+
with torch.no_grad():
|
| 127 |
+
outputs = en_model(**inputs)
|
| 128 |
+
logits = outputs.logits.squeeze(0)
|
| 129 |
+
probs = torch.softmax(logits, dim=-1)
|
| 130 |
+
|
| 131 |
+
label_idx = int(torch.argmax(probs).item())
|
| 132 |
+
eng_label, vi_label = en_label_map[label_idx]
|
| 133 |
+
confidence = float(probs[label_idx].item())
|
| 134 |
+
|
| 135 |
+
scores = {
|
| 136 |
+
en_label_map[i][1]: round(float(probs[i].item()), 3) for i in range(2)
|
| 137 |
+
}
|
| 138 |
+
|
| 139 |
+
return {
|
| 140 |
+
"language": "en",
|
| 141 |
+
"label": vi_label, # Giữ English, có thể đổi sang tiếng Việt nếu muốn
|
| 142 |
+
"english_label": eng_label,
|
| 143 |
+
"score": round(confidence, 3),
|
| 144 |
+
"scores": scores
|
| 145 |
+
}
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
# -----------------------------
|
| 149 |
+
# Flask routes
|
| 150 |
+
# -----------------------------
|
| 151 |
+
@app.route("/", methods=["GET"])
|
| 152 |
+
def home():
|
| 153 |
+
return render_template("index.html")
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
@app.route("/analyze", methods=["POST"])
|
| 157 |
+
def analyze():
|
| 158 |
+
data = request.get_json(force=True)
|
| 159 |
+
text = (data.get("text") or "").strip()
|
| 160 |
+
lang = (data.get("lang") or "auto").lower()
|
| 161 |
+
if not text:
|
| 162 |
+
return jsonify({"error": "Text is empty."}), 400
|
| 163 |
+
|
| 164 |
+
if lang == "auto":
|
| 165 |
+
lang = detect_lang(text)
|
| 166 |
+
|
| 167 |
+
if lang == "vi":
|
| 168 |
+
result = analyze_vi(text)
|
| 169 |
+
else:
|
| 170 |
+
result = analyze_en(text)
|
| 171 |
+
|
| 172 |
+
return jsonify({
|
| 173 |
+
"ok": True,
|
| 174 |
+
"input": {"text": text, "lang": lang},
|
| 175 |
+
"result": result
|
| 176 |
+
})
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
if __name__ == "__main__":
|
| 180 |
+
port = int(os.environ.get("PORT", 7860))
|
| 181 |
+
app.run(host="0.0.0.0", port=port)
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
flask==3.0.3
|
| 2 |
+
transformers==4.44.2
|
| 3 |
+
torch==2.2.0+cpu
|
| 4 |
+
accelerate==0.33.0
|
| 5 |
+
langdetect==1.0.9
|
| 6 |
+
--extra-index-url https://download.pytorch.org/whl/cpu
|
static/main.js
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
const $ = (sel) => document.querySelector(sel);
|
| 2 |
+
const analyzeBtn = $("#analyzeBtn");
|
| 3 |
+
const loader = $("#loader");
|
| 4 |
+
const resultBox = $("#result");
|
| 5 |
+
const resLang = $("#resLang");
|
| 6 |
+
const resLabel = $("#resLabel");
|
| 7 |
+
const resScore = $("#resScore");
|
| 8 |
+
const langSelect = $("#lang");
|
| 9 |
+
const textArea = $("#text");
|
| 10 |
+
|
| 11 |
+
function show(el){ el.classList.remove("hidden"); }
|
| 12 |
+
function hide(el){ el.classList.add("hidden"); }
|
| 13 |
+
function percent(x){ return (x*100).toFixed(1) + "%"; }
|
| 14 |
+
|
| 15 |
+
function renderBars(lang, scores){
|
| 16 |
+
const keys = lang === "vi" ? ["NEGATIVE","NEUTRAL","POSITIVE"] : ["NEGATIVE","POSITIVE"];
|
| 17 |
+
keys.forEach(k=>{
|
| 18 |
+
const wrap = document.createElement("div");
|
| 19 |
+
wrap.className = "bar";
|
| 20 |
+
const fill = document.createElement("div");
|
| 21 |
+
fill.className = "bar-fill";
|
| 22 |
+
fill.style.width = "0%";
|
| 23 |
+
const label = document.createElement("div");
|
| 24 |
+
label.className = "bar-label";
|
| 25 |
+
const sc = scores[k] ?? 0;
|
| 26 |
+
label.innerHTML = `<span>${k}</span><span>${percent(sc)}</span>`;
|
| 27 |
+
wrap.appendChild(fill);
|
| 28 |
+
setTimeout(()=>{ fill.style.width = percent(sc); }, 30);
|
| 29 |
+
});
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
+
langSelect.addEventListener("change", (e) => {
|
| 33 |
+
const lang = e.target.value;
|
| 34 |
+
console.clear();
|
| 35 |
+
console.log("Ngôn ngữ được chọn:", lang);
|
| 36 |
+
});
|
| 37 |
+
|
| 38 |
+
textArea.addEventListener("input", () => {
|
| 39 |
+
console.log("Nội dung hiện tại:", textArea.value.trim());
|
| 40 |
+
});
|
| 41 |
+
|
| 42 |
+
analyzeBtn.addEventListener("click", async ()=>{
|
| 43 |
+
const text = textArea.value.trim();
|
| 44 |
+
const lang = langSelect.value;
|
| 45 |
+
console.log("▶️ Bắt đầu phân tích với:", { text, lang });
|
| 46 |
+
|
| 47 |
+
if (!text) {
|
| 48 |
+
alert("Nhập nội dung trước.");
|
| 49 |
+
return;
|
| 50 |
+
}
|
| 51 |
+
|
| 52 |
+
hide(resultBox);
|
| 53 |
+
show(loader);
|
| 54 |
+
|
| 55 |
+
try{
|
| 56 |
+
const r = await fetch("/analyze", {
|
| 57 |
+
method:"POST",
|
| 58 |
+
headers:{ "Content-Type":"application/json" },
|
| 59 |
+
body: JSON.stringify({ text, lang })
|
| 60 |
+
});
|
| 61 |
+
const data = await r.json();
|
| 62 |
+
hide(loader);
|
| 63 |
+
|
| 64 |
+
if (!r.ok || data.ok !== true){
|
| 65 |
+
alert(data.error || "Có lỗi xảy ra.");
|
| 66 |
+
console.error("Lỗi phản hồi:", data);
|
| 67 |
+
return;
|
| 68 |
+
}
|
| 69 |
+
|
| 70 |
+
const { input, result } = data;
|
| 71 |
+
console.log("Kết quả nhận được:", result);
|
| 72 |
+
|
| 73 |
+
resLang.textContent = input.lang.toUpperCase();
|
| 74 |
+
resLabel.textContent = result.label;
|
| 75 |
+
resLabel.style.borderColor =
|
| 76 |
+
result.label === "POSITIVE" ? "#23d2ac" :
|
| 77 |
+
result.label === "NEUTRAL" ? "#ffd166" : "#ff6b6b";
|
| 78 |
+
resScore.textContent = percent(result.score);
|
| 79 |
+
|
| 80 |
+
renderBars(input.lang, result.scores);
|
| 81 |
+
show(resultBox);
|
| 82 |
+
|
| 83 |
+
}catch(e){
|
| 84 |
+
hide(loader);
|
| 85 |
+
alert("Lỗi mạng hoặc server.");
|
| 86 |
+
console.error("Lỗi khi gửi request:", e);
|
| 87 |
+
}
|
| 88 |
+
});
|
static/style.css
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
:root{
|
| 2 |
+
--bg:#0f1220;
|
| 3 |
+
--panel:#171a2b;
|
| 4 |
+
--panel-2:#1e2236;
|
| 5 |
+
--text:#eef1ff;
|
| 6 |
+
--muted:#9aa3c7;
|
| 7 |
+
--primary:#6c8dff;
|
| 8 |
+
--accent:#23d2ac;
|
| 9 |
+
--danger:#ff6b6b;
|
| 10 |
+
--warning:#ffd166;
|
| 11 |
+
--neutral:#a0aec0;
|
| 12 |
+
--border:#2a3150;
|
| 13 |
+
--shadow: 0 10px 25px rgba(0,0,0,.35);
|
| 14 |
+
}
|
| 15 |
+
|
| 16 |
+
*{box-sizing:border-box}
|
| 17 |
+
html,body{height:100%}
|
| 18 |
+
body{
|
| 19 |
+
margin:0;
|
| 20 |
+
display:flex;
|
| 21 |
+
font-family: system-ui, -apple-system, "Segoe UI", Roboto, Arial, "Helvetica Neue", sans-serif;
|
| 22 |
+
background: linear-gradient(180deg, #0a0d1a, #11162a);
|
| 23 |
+
color:var(--text);
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
/* Sidebar */
|
| 27 |
+
.sidebar{
|
| 28 |
+
width:280px;
|
| 29 |
+
background:var(--panel);
|
| 30 |
+
border-right:1px solid var(--border);
|
| 31 |
+
display:flex; flex-direction:column;
|
| 32 |
+
position:sticky; top:0; height:100vh;
|
| 33 |
+
box-shadow: var(--shadow);
|
| 34 |
+
}
|
| 35 |
+
.brand{display:flex; gap:12px; justify-content: center ;padding:20px; align-items:center; border-bottom:1px solid var(--border)}
|
| 36 |
+
.logo{width:40px; height:40px; border-radius:12px; display:grid; place-items:center; background:var(--panel-2); font-size:22px}
|
| 37 |
+
.brand-text h1{margin:0; font-size:18px}
|
| 38 |
+
.brand-text p{margin:2px 0 0; font-size:12px; color:var(--muted)}
|
| 39 |
+
.nav{padding:8px}
|
| 40 |
+
.nav-item{
|
| 41 |
+
display:block; padding:12px 16px; margin:6px 10px; border-radius:10px;
|
| 42 |
+
color:var(--text); text-decoration:none; background:transparent; border:1px solid transparent;
|
| 43 |
+
}
|
| 44 |
+
.nav-item:hover{background:var(--panel-2)}
|
| 45 |
+
.nav-item.active{border-color:var(--primary); background:rgba(108,141,255,.08)}
|
| 46 |
+
.nav-item.disabled{opacity:.6; cursor:not-allowed}
|
| 47 |
+
.sidebar-footer{margin-top:auto; padding:16px; color:var(--muted); border-top:1px solid var(--border)}
|
| 48 |
+
|
| 49 |
+
/* Main */
|
| 50 |
+
.main{flex:1; display:flex; flex-direction:column; min-width:0}
|
| 51 |
+
.header{
|
| 52 |
+
display:flex; align-items:center; justify-content:space-between;
|
| 53 |
+
padding:18px 24px; border-bottom:1px solid var(--border);
|
| 54 |
+
backdrop-filter: blur(6px);
|
| 55 |
+
}
|
| 56 |
+
.header h2{margin:0; font-size:20px}
|
| 57 |
+
.badge{padding:6px 10px; background:var(--panel-2); border:1px solid var(--border); border-radius:999px; font-size:12px; color:var(--muted)}
|
| 58 |
+
|
| 59 |
+
.card{
|
| 60 |
+
background:var(--panel);
|
| 61 |
+
margin:24px; padding:20px; border:1px solid var(--border); border-radius:16px;
|
| 62 |
+
box-shadow: var(--shadow);
|
| 63 |
+
}
|
| 64 |
+
|
| 65 |
+
label{display:block; margin:10px 0 6px; color:#e4e8ff}
|
| 66 |
+
select, textarea{
|
| 67 |
+
width:100%; background:var(--panel-2); color:var(--text);
|
| 68 |
+
border:1px solid var(--border); border-radius:12px; padding:12px 14px; outline:none;
|
| 69 |
+
}
|
| 70 |
+
textarea{resize:vertical}
|
| 71 |
+
|
| 72 |
+
.actions{display:flex; justify-content:flex-end; margin-top:12px}
|
| 73 |
+
button{
|
| 74 |
+
border:1px solid transparent; background:var(--primary); color:white; padding:12px 16px;
|
| 75 |
+
border-radius:12px; cursor:pointer; font-weight:600; transition:.2s transform ease;
|
| 76 |
+
box-shadow: 0 6px 16px rgba(108,141,255,.35);
|
| 77 |
+
}
|
| 78 |
+
button:hover{transform: translateY(-1px)}
|
| 79 |
+
button:active{transform: translateY(0)}
|
| 80 |
+
|
| 81 |
+
.row{display:flex; gap:16px; margin-bottom:8px}
|
| 82 |
+
.col{flex:1}
|
| 83 |
+
|
| 84 |
+
/* Loader */
|
| 85 |
+
.loader{display:flex; align-items:center; gap:12px; margin-top:16px; padding:12px 14px;
|
| 86 |
+
border:1px dashed var(--border); border-radius:12px; background:rgba(255,255,255,.02)}
|
| 87 |
+
.spinner{
|
| 88 |
+
width:20px; height:20px; border-radius:50%;
|
| 89 |
+
border:3px solid rgba(255,255,255,.2); border-top-color:var(--accent);
|
| 90 |
+
animation:spin 0.9s linear infinite;
|
| 91 |
+
}
|
| 92 |
+
@keyframes spin{to{transform:rotate(360deg)}}
|
| 93 |
+
.hidden{display:none}
|
| 94 |
+
|
| 95 |
+
/* Result */
|
| 96 |
+
.result{margin-top:16px}
|
| 97 |
+
.result h3{margin:0 0 12px}
|
| 98 |
+
.result-grid{display:grid; grid-template-columns: repeat(3,1fr); gap:12px}
|
| 99 |
+
.result-item{background:var(--panel-2); border:1px solid var(--border); border-radius:12px; padding:12px}
|
| 100 |
+
.result-item .label{display:block; font-size:12px; color:var(--muted); margin-bottom:6px}
|
| 101 |
+
.value{font-weight:700}
|
| 102 |
+
.badge-lg{padding:6px 10px; border-radius:10px; border:1px solid var(--border); background:rgba(255,255,255,.04)}
|
| 103 |
+
.bars{margin-top:14px}
|
| 104 |
+
.bar{
|
| 105 |
+
background:var(--panel-2); border:1px solid var(--border); border-radius:10px; overflow:hidden; margin:8px 0
|
| 106 |
+
}
|
| 107 |
+
.bar-fill{
|
| 108 |
+
height:14px; background:linear-gradient(90deg, var(--accent), var(--primary));
|
| 109 |
+
width:0%;
|
| 110 |
+
transition: width .5s ease;
|
| 111 |
+
}
|
| 112 |
+
.bar-label{display:flex; justify-content:space-between; font-size:12px; color:var(--muted); margin-top:4px}
|
| 113 |
+
|
| 114 |
+
/* Footer */
|
| 115 |
+
.footer{
|
| 116 |
+
margin: 0 24px 24px; color:var(--muted);
|
| 117 |
+
}
|
templates/index.html
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<!DOCTYPE html>
|
| 2 |
+
<html lang="vi">
|
| 3 |
+
<head>
|
| 4 |
+
<meta charset="utf-8" />
|
| 5 |
+
<meta name="viewport" content="width=device-width,initial-scale=1" />
|
| 6 |
+
<title>Sentiment Analysis (EN + VI)</title>
|
| 7 |
+
<link rel="stylesheet" href="/static/style.css" />
|
| 8 |
+
</head>
|
| 9 |
+
<body>
|
| 10 |
+
<aside class="sidebar">
|
| 11 |
+
<div class="brand">
|
| 12 |
+
<div class="brand-text">
|
| 13 |
+
<h1>Sentiment AI</h1>
|
| 14 |
+
<p>English & Tiếng Việt</p>
|
| 15 |
+
</div>
|
| 16 |
+
</div>
|
| 17 |
+
<nav class="nav">
|
| 18 |
+
<a class="nav-item active" href="#">Phân tích</a>
|
| 19 |
+
<a class="nav-item disabled" href="#" title="Coming soon">Lịch sử</a>
|
| 20 |
+
<a class="nav-item disabled" href="#" title="Coming soon">Cấu hình</a>
|
| 21 |
+
</nav>
|
| 22 |
+
<footer class="sidebar-footer">
|
| 23 |
+
<small>© 2025—Demo</small>
|
| 24 |
+
</footer>
|
| 25 |
+
</aside>
|
| 26 |
+
|
| 27 |
+
<main class="main">
|
| 28 |
+
<header class="header">
|
| 29 |
+
<h2>Phân tích cảm xúc</h2>
|
| 30 |
+
<div class="right">
|
| 31 |
+
<span class="badge">PhoBERT + SST-2</span>
|
| 32 |
+
</div>
|
| 33 |
+
</header>
|
| 34 |
+
|
| 35 |
+
<section class="card">
|
| 36 |
+
<div class="row">
|
| 37 |
+
<div class="col">
|
| 38 |
+
<label for="lang">Ngôn ngữ</label>
|
| 39 |
+
<select id="lang">
|
| 40 |
+
<option value="auto">Tự động</option>
|
| 41 |
+
<option value="vi" selected>Tiếng Việt</option>
|
| 42 |
+
<option value="en">English</option>
|
| 43 |
+
</select>
|
| 44 |
+
</div>
|
| 45 |
+
</div>
|
| 46 |
+
|
| 47 |
+
<label for="text">Nội dung cần phân tích</label>
|
| 48 |
+
<textarea
|
| 49 |
+
id="text"
|
| 50 |
+
rows="6"
|
| 51 |
+
placeholder="Nhập nội dung... Ví dụ: Mình rất thích sản phẩm này! / I absolutely love this!"
|
| 52 |
+
></textarea>
|
| 53 |
+
|
| 54 |
+
<div class="actions">
|
| 55 |
+
<button id="analyzeBtn">Phân tích</button>
|
| 56 |
+
</div>
|
| 57 |
+
|
| 58 |
+
<div id="loader" class="loader hidden">
|
| 59 |
+
<div class="spinner"></div>
|
| 60 |
+
<p>Đang phân tích...</p>
|
| 61 |
+
</div>
|
| 62 |
+
|
| 63 |
+
<div id="result" class="result hidden">
|
| 64 |
+
<h3>Kết quả</h3>
|
| 65 |
+
<div class="result-grid">
|
| 66 |
+
<div class="result-item">
|
| 67 |
+
<span class="label">Ngôn ngữ</span>
|
| 68 |
+
<span id="resLang" class="value">—</span>
|
| 69 |
+
</div>
|
| 70 |
+
<div class="result-item">
|
| 71 |
+
<span class="label">Nhận định</span>
|
| 72 |
+
<span id="resLabel" class="value badge-lg">—</span>
|
| 73 |
+
</div>
|
| 74 |
+
<div class="result-item">
|
| 75 |
+
<span class="label">Độ tin cậy</span>
|
| 76 |
+
<span id="resScore" class="value">—</span>
|
| 77 |
+
</div>
|
| 78 |
+
</div>
|
| 79 |
+
|
| 80 |
+
<div id="resBars" class="bars"></div>
|
| 81 |
+
</div>
|
| 82 |
+
</section>
|
| 83 |
+
</main>
|
| 84 |
+
|
| 85 |
+
<script src="/static/main.js"></script>
|
| 86 |
+
</body>
|
| 87 |
+
</html>
|