Hoang Kha commited on
Commit
3add779
·
1 Parent(s): b608f06

disable huggingface cache completely for Spaces

Browse files
Files changed (2) hide show
  1. Dockerfile +1 -2
  2. main.py +20 -10
Dockerfile CHANGED
@@ -9,7 +9,6 @@ RUN pip install --no-cache-dir -r requirements.txt
9
 
10
  EXPOSE 7860
11
 
12
- ENV HF_HOME=/home/user/.cache/huggingface
13
- RUN mkdir -p /home/user/.cache/huggingface
14
 
15
  CMD ["python", "main.py"]
 
9
 
10
  EXPOSE 7860
11
 
12
+ ENV HF_HUB_DISABLE_CACHE=1
 
13
 
14
  CMD ["python", "main.py"]
main.py CHANGED
@@ -4,9 +4,9 @@ from langdetect import detect
4
  import torch
5
  import torch.nn.functional as F
6
  from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
7
- HF_CACHE_DIR = "/home/user/.cache/huggingface"
8
- os.makedirs(HF_CACHE_DIR, exist_ok=True)
9
- os.environ["HF_HOME"] = HF_CACHE_DIR
10
 
11
  app = Flask(__name__)
12
 
@@ -20,17 +20,27 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
20
  # vi_tokenizer = AutoTokenizer.from_pretrained(VI_MODEL_NAME, use_fast=False)
21
  # vi_model = AutoModelForSequenceClassification.from_pretrained(VI_MODEL_NAME).to(device)
22
  # vi_model.eval()
23
- vi_tokenizer = AutoTokenizer.from_pretrained(VI_MODEL_NAME, use_fast=False)
24
- vi_model = AutoModelForSequenceClassification.from_pretrained(VI_MODEL_NAME)
 
 
 
 
 
 
 
 
 
 
 
 
25
  vi_model.eval()
26
  sentiment_pipeline = pipeline("sentiment-analysis", model=vi_model, tokenizer=vi_tokenizer)
27
 
28
-
29
- # English model
30
- en_tokenizer = AutoTokenizer.from_pretrained(EN_MODEL_NAME)
31
- en_model = AutoModelForSequenceClassification.from_pretrained(EN_MODEL_NAME).to(device)
32
  en_model.eval()
33
-
34
  # Label mapping cho PhoBERT
35
  vi_label_map = {
36
  0: ("NEGATIVE", "Tiêu cực"),
 
4
  import torch
5
  import torch.nn.functional as F
6
  from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
7
+ os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
8
+ os.environ["TRANSFORMERS_OFFLINE"] = "0"
9
+ os.environ["HF_HUB_DISABLE_CACHE"] = "1"
10
 
11
  app = Flask(__name__)
12
 
 
20
  # vi_tokenizer = AutoTokenizer.from_pretrained(VI_MODEL_NAME, use_fast=False)
21
  # vi_model = AutoModelForSequenceClassification.from_pretrained(VI_MODEL_NAME).to(device)
22
  # vi_model.eval()
23
+ # vi_tokenizer = AutoTokenizer.from_pretrained(VI_MODEL_NAME, use_fast=False)
24
+ # vi_model = AutoModelForSequenceClassification.from_pretrained(VI_MODEL_NAME)
25
+ # vi_model.eval()
26
+ # sentiment_pipeline = pipeline("sentiment-analysis", model=vi_model, tokenizer=vi_tokenizer)
27
+
28
+
29
+ # # English model
30
+ # en_tokenizer = AutoTokenizer.from_pretrained(EN_MODEL_NAME)
31
+ # en_model = AutoModelForSequenceClassification.from_pretrained(EN_MODEL_NAME).to(device)
32
+ # en_model.eval()
33
+
34
+ print("🔄 Loading Vietnamese model from Hugging Face Hub (no cache)...")
35
+ vi_tokenizer = AutoTokenizer.from_pretrained(VI_MODEL_NAME, use_fast=False, local_files_only=False)
36
+ vi_model = AutoModelForSequenceClassification.from_pretrained(VI_MODEL_NAME, local_files_only=False)
37
  vi_model.eval()
38
  sentiment_pipeline = pipeline("sentiment-analysis", model=vi_model, tokenizer=vi_tokenizer)
39
 
40
+ print("🔄 Loading English model from Hugging Face Hub (no cache)...")
41
+ en_tokenizer = AutoTokenizer.from_pretrained(EN_MODEL_NAME, local_files_only=False)
42
+ en_model = AutoModelForSequenceClassification.from_pretrained(EN_MODEL_NAME, local_files_only=False)
 
43
  en_model.eval()
 
44
  # Label mapping cho PhoBERT
45
  vi_label_map = {
46
  0: ("NEGATIVE", "Tiêu cực"),