Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| # coding=utf-8 | |
| # Copyright 2021 The HuggingFace Team All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) with whole word masking on a | |
| text file or a dataset. | |
| Here is the full list of checkpoints on the hub that can be fine-tuned by this script: | |
| https://huggingface.co/models?filter=fill-mask | |
| """ | |
| import json | |
| import logging | |
| import math | |
| import os | |
| import sys | |
| import time | |
| from dataclasses import asdict, dataclass, field | |
| from enum import Enum | |
| from itertools import chain | |
| # You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments. | |
| from pathlib import Path | |
| from typing import Dict, List, Optional, Tuple | |
| import flax | |
| import jax | |
| import jax.numpy as jnp | |
| import numpy as np | |
| import optax | |
| from datasets import load_dataset | |
| from flax import jax_utils, traverse_util | |
| from flax.jax_utils import pad_shard_unpad | |
| from flax.training import train_state | |
| from flax.training.common_utils import get_metrics, onehot, shard | |
| from huggingface_hub import Repository, create_repo | |
| from tqdm import tqdm | |
| from transformers import ( | |
| CONFIG_MAPPING, | |
| FLAX_MODEL_FOR_MASKED_LM_MAPPING, | |
| AutoConfig, | |
| AutoTokenizer, | |
| FlaxAutoModelForMaskedLM, | |
| HfArgumentParser, | |
| PreTrainedTokenizerBase, | |
| TensorType, | |
| is_tensorboard_available, | |
| set_seed, | |
| ) | |
| from transformers.utils import get_full_repo_name, send_example_telemetry | |
| MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_MASKED_LM_MAPPING.keys()) | |
| MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) | |
| class TrainingArguments: | |
| output_dir: str = field( | |
| metadata={"help": "The output directory where the model predictions and checkpoints will be written."}, | |
| ) | |
| overwrite_output_dir: bool = field( | |
| default=False, | |
| metadata={ | |
| "help": ( | |
| "Overwrite the content of the output directory. " | |
| "Use this to continue training if output_dir points to a checkpoint directory." | |
| ) | |
| }, | |
| ) | |
| do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) | |
| do_eval: bool = field(default=False, metadata={"help": "Whether to run eval on the dev set."}) | |
| per_device_train_batch_size: int = field( | |
| default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."} | |
| ) | |
| per_device_eval_batch_size: int = field( | |
| default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."} | |
| ) | |
| learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."}) | |
| weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."}) | |
| adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"}) | |
| adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"}) | |
| adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."}) | |
| adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."}) | |
| num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."}) | |
| warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."}) | |
| logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."}) | |
| save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."}) | |
| eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."}) | |
| seed: int = field(default=42, metadata={"help": "Random seed that will be set at the beginning of training."}) | |
| push_to_hub: bool = field( | |
| default=False, metadata={"help": "Whether or not to upload the trained model to the model hub after training."} | |
| ) | |
| hub_model_id: str = field( | |
| default=None, metadata={"help": "The name of the repository to keep in sync with the local `output_dir`."} | |
| ) | |
| hub_token: str = field(default=None, metadata={"help": "The token to use to push to the Model Hub."}) | |
| gradient_checkpointing: bool = field( | |
| default=False, | |
| metadata={ | |
| "help": "If True, use gradient checkpointing to save memory at the expense of slower backward pass." | |
| }, | |
| ) | |
| def __post_init__(self): | |
| if self.output_dir is not None: | |
| self.output_dir = os.path.expanduser(self.output_dir) | |
| def to_dict(self): | |
| """ | |
| Serializes this instance while replace `Enum` by their values (for JSON serialization support). It obfuscates | |
| the token values by removing their value. | |
| """ | |
| d = asdict(self) | |
| for k, v in d.items(): | |
| if isinstance(v, Enum): | |
| d[k] = v.value | |
| if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum): | |
| d[k] = [x.value for x in v] | |
| if k.endswith("_token"): | |
| d[k] = f"<{k.upper()}>" | |
| return d | |
| class ModelArguments: | |
| """ | |
| Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. | |
| """ | |
| model_name_or_path: Optional[str] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." | |
| ) | |
| }, | |
| ) | |
| model_type: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, | |
| ) | |
| config_name: Optional[str] = field( | |
| default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
| ) | |
| tokenizer_name: Optional[str] = field( | |
| default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | |
| ) | |
| cache_dir: Optional[str] = field( | |
| default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} | |
| ) | |
| use_fast_tokenizer: bool = field( | |
| default=True, | |
| metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, | |
| ) | |
| dtype: Optional[str] = field( | |
| default="float32", | |
| metadata={ | |
| "help": ( | |
| "Floating-point format in which the model weights should be initialized and trained. Choose one of" | |
| " `[float32, float16, bfloat16]`." | |
| ) | |
| }, | |
| ) | |
| use_auth_token: bool = field( | |
| default=False, | |
| metadata={ | |
| "help": ( | |
| "Will use the token generated when running `huggingface-cli login` (necessary to use this script " | |
| "with private models)." | |
| ) | |
| }, | |
| ) | |
| class DataTrainingArguments: | |
| """ | |
| Arguments pertaining to what data we are going to input our model for training and eval. | |
| """ | |
| dataset_name: Optional[str] = field( | |
| default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} | |
| ) | |
| dataset_config_name: Optional[str] = field( | |
| default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} | |
| ) | |
| train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) | |
| validation_file: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, | |
| ) | |
| train_ref_file: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "An optional input train ref data file for whole word masking in Chinese."}, | |
| ) | |
| validation_ref_file: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "An optional input validation ref data file for whole word masking in Chinese."}, | |
| ) | |
| overwrite_cache: bool = field( | |
| default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} | |
| ) | |
| validation_split_percentage: Optional[int] = field( | |
| default=5, | |
| metadata={ | |
| "help": "The percentage of the train set used as validation set in case there's no validation split" | |
| }, | |
| ) | |
| max_seq_length: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "The maximum total input sequence length after tokenization. Sequences longer " | |
| "than this will be truncated. Default to the max input length of the model." | |
| ) | |
| }, | |
| ) | |
| preprocessing_num_workers: Optional[int] = field( | |
| default=None, | |
| metadata={"help": "The number of processes to use for the preprocessing."}, | |
| ) | |
| mlm_probability: float = field( | |
| default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} | |
| ) | |
| pad_to_max_length: bool = field( | |
| default=False, | |
| metadata={ | |
| "help": ( | |
| "Whether to pad all samples to `max_seq_length`. " | |
| "If False, will pad the samples dynamically when batching to the maximum length in the batch." | |
| ) | |
| }, | |
| ) | |
| line_by_line: bool = field( | |
| default=False, | |
| metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."}, | |
| ) | |
| def __post_init__(self): | |
| if self.dataset_name is None and self.train_file is None and self.validation_file is None: | |
| raise ValueError("Need either a dataset name or a training/validation file.") | |
| else: | |
| if self.train_file is not None: | |
| extension = self.train_file.split(".")[-1] | |
| assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." | |
| if self.validation_file is not None: | |
| extension = self.validation_file.split(".")[-1] | |
| assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." | |
| class FlaxDataCollatorForLanguageModeling: | |
| """ | |
| Data collator used for language modeling. Inputs are dynamically padded to the maximum length of a batch if they | |
| are not all of the same length. | |
| Args: | |
| tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`): | |
| The tokenizer used for encoding the data. | |
| mlm_probability (:obj:`float`, `optional`, defaults to 0.15): | |
| The probability with which to (randomly) mask tokens in the input. | |
| .. note:: | |
| For best performance, this data collator should be used with a dataset having items that are dictionaries or | |
| BatchEncoding, with the :obj:`"special_tokens_mask"` key, as returned by a | |
| :class:`~transformers.PreTrainedTokenizer` or a :class:`~transformers.PreTrainedTokenizerFast` with the | |
| argument :obj:`return_special_tokens_mask=True`. | |
| """ | |
| tokenizer: PreTrainedTokenizerBase | |
| mlm_probability: float = 0.15 | |
| def __post_init__(self): | |
| if self.tokenizer.mask_token is None: | |
| raise ValueError( | |
| "This tokenizer does not have a mask token which is necessary for masked language modeling. " | |
| "You should pass `mlm=False` to train on causal language modeling instead." | |
| ) | |
| def __call__(self, examples: List[Dict[str, np.ndarray]], pad_to_multiple_of: int) -> Dict[str, np.ndarray]: | |
| # Handle dict or lists with proper padding and conversion to tensor. | |
| batch = self.tokenizer.pad(examples, pad_to_multiple_of=pad_to_multiple_of, return_tensors=TensorType.NUMPY) | |
| # If special token mask has been preprocessed, pop it from the dict. | |
| special_tokens_mask = batch.pop("special_tokens_mask", None) | |
| batch["input_ids"], batch["labels"] = self.mask_tokens( | |
| batch["input_ids"], special_tokens_mask=special_tokens_mask | |
| ) | |
| return batch | |
| def mask_tokens( | |
| self, inputs: np.ndarray, special_tokens_mask: Optional[np.ndarray] | |
| ) -> Tuple[np.ndarray, np.ndarray]: | |
| """ | |
| Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. | |
| """ | |
| labels = inputs.copy() | |
| # We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`) | |
| probability_matrix = np.full(labels.shape, self.mlm_probability) | |
| special_tokens_mask = special_tokens_mask.astype("bool") | |
| probability_matrix[special_tokens_mask] = 0.0 | |
| masked_indices = np.random.binomial(1, probability_matrix).astype("bool") | |
| labels[~masked_indices] = -100 # We only compute loss on masked tokens | |
| # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK]) | |
| indices_replaced = np.random.binomial(1, np.full(labels.shape, 0.8)).astype("bool") & masked_indices | |
| inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token) | |
| # 10% of the time, we replace masked input tokens with random word | |
| indices_random = np.random.binomial(1, np.full(labels.shape, 0.5)).astype("bool") | |
| indices_random &= masked_indices & ~indices_replaced | |
| random_words = np.random.randint(self.tokenizer.vocab_size, size=labels.shape, dtype="i4") | |
| inputs[indices_random] = random_words[indices_random] | |
| # The rest of the time (10% of the time) we keep the masked input tokens unchanged | |
| return inputs, labels | |
| def generate_batch_splits(samples_idx: np.ndarray, batch_size: int, drop_last=True) -> np.ndarray: | |
| """Generate batches of data for a specified batch size from sample indices. If the dataset size is not divisible by | |
| the batch size and `drop_last` is `True`, the last incomplete batch is dropped. Else, it is returned.""" | |
| num_samples = len(samples_idx) | |
| if drop_last: | |
| samples_to_remove = num_samples % batch_size | |
| if samples_to_remove != 0: | |
| samples_idx = samples_idx[:-samples_to_remove] | |
| sections_split = num_samples // batch_size | |
| samples_idx = samples_idx.reshape((sections_split, batch_size)) | |
| else: | |
| sections_split = math.ceil(num_samples / batch_size) | |
| samples_idx = np.array_split(samples_idx, sections_split) | |
| return samples_idx | |
| def write_train_metric(summary_writer, train_metrics, train_time, step): | |
| summary_writer.scalar("train_time", train_time, step) | |
| train_metrics = get_metrics(train_metrics) | |
| for key, vals in train_metrics.items(): | |
| tag = f"train_{key}" | |
| for i, val in enumerate(vals): | |
| summary_writer.scalar(tag, val, step - len(vals) + i + 1) | |
| def write_eval_metric(summary_writer, eval_metrics, step): | |
| for metric_name, value in eval_metrics.items(): | |
| summary_writer.scalar(f"eval_{metric_name}", value, step) | |
| def main(): | |
| # See all possible arguments in src/transformers/training_args.py | |
| # or by passing the --help flag to this script. | |
| # We now keep distinct sets of args, for a cleaner separation of concerns. | |
| parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) | |
| if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
| # If we pass only one argument to the script and it's the path to a json file, | |
| # let's parse it to get our arguments. | |
| model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | |
| else: | |
| model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
| # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The | |
| # information sent is the one passed as arguments along with your Python/PyTorch versions. | |
| send_example_telemetry("run_mlm", model_args, data_args, framework="flax") | |
| if ( | |
| os.path.exists(training_args.output_dir) | |
| and os.listdir(training_args.output_dir) | |
| and training_args.do_train | |
| and not training_args.overwrite_output_dir | |
| ): | |
| raise ValueError( | |
| f"Output directory ({training_args.output_dir}) already exists and is not empty." | |
| "Use --overwrite_output_dir to overcome." | |
| ) | |
| # Setup logging | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| level=logging.INFO, | |
| datefmt="[%X]", | |
| ) | |
| # Log on each process the small summary: | |
| logger = logging.getLogger(__name__) | |
| # Set the verbosity to info of the Transformers logger (on main process only): | |
| logger.info(f"Training/evaluation parameters {training_args}") | |
| # Set seed before initializing model. | |
| set_seed(training_args.seed) | |
| # Handle the repository creation | |
| if training_args.push_to_hub: | |
| if training_args.hub_model_id is None: | |
| repo_name = get_full_repo_name( | |
| Path(training_args.output_dir).absolute().name, token=training_args.hub_token | |
| ) | |
| else: | |
| repo_name = training_args.hub_model_id | |
| create_repo(repo_name, exist_ok=True, token=training_args.hub_token) | |
| repo = Repository(training_args.output_dir, clone_from=repo_name, token=training_args.hub_token) | |
| # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) | |
| # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ | |
| # (the dataset will be downloaded automatically from the datasets Hub). | |
| # | |
| # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called | |
| # 'text' is found. You can easily tweak this behavior (see below). | |
| # | |
| # In distributed training, the load_dataset function guarantees that only one local process can concurrently | |
| # download the dataset. | |
| if data_args.dataset_name is not None: | |
| # Downloading and loading a dataset from the hub. | |
| datasets = load_dataset( | |
| data_args.dataset_name, | |
| data_args.dataset_config_name, | |
| cache_dir=model_args.cache_dir, | |
| use_auth_token=True if model_args.use_auth_token else None, | |
| ) | |
| if "validation" not in datasets.keys(): | |
| datasets["validation"] = load_dataset( | |
| data_args.dataset_name, | |
| data_args.dataset_config_name, | |
| split=f"train[:{data_args.validation_split_percentage}%]", | |
| cache_dir=model_args.cache_dir, | |
| use_auth_token=True if model_args.use_auth_token else None, | |
| ) | |
| datasets["train"] = load_dataset( | |
| data_args.dataset_name, | |
| data_args.dataset_config_name, | |
| split=f"train[{data_args.validation_split_percentage}%:]", | |
| cache_dir=model_args.cache_dir, | |
| use_auth_token=True if model_args.use_auth_token else None, | |
| ) | |
| else: | |
| data_files = {} | |
| if data_args.train_file is not None: | |
| data_files["train"] = data_args.train_file | |
| if data_args.validation_file is not None: | |
| data_files["validation"] = data_args.validation_file | |
| extension = data_args.train_file.split(".")[-1] | |
| if extension == "txt": | |
| extension = "text" | |
| datasets = load_dataset( | |
| extension, | |
| data_files=data_files, | |
| cache_dir=model_args.cache_dir, | |
| use_auth_token=True if model_args.use_auth_token else None, | |
| ) | |
| if "validation" not in datasets.keys(): | |
| datasets["validation"] = load_dataset( | |
| extension, | |
| data_files=data_files, | |
| split=f"train[:{data_args.validation_split_percentage}%]", | |
| cache_dir=model_args.cache_dir, | |
| use_auth_token=True if model_args.use_auth_token else None, | |
| ) | |
| datasets["train"] = load_dataset( | |
| extension, | |
| data_files=data_files, | |
| split=f"train[{data_args.validation_split_percentage}%:]", | |
| cache_dir=model_args.cache_dir, | |
| use_auth_token=True if model_args.use_auth_token else None, | |
| ) | |
| # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at | |
| # https://huggingface.co/docs/datasets/loading_datasets.html. | |
| # Load pretrained model and tokenizer | |
| # Distributed training: | |
| # The .from_pretrained methods guarantee that only one local process can concurrently | |
| # download model & vocab. | |
| if model_args.config_name: | |
| config = AutoConfig.from_pretrained( | |
| model_args.config_name, | |
| cache_dir=model_args.cache_dir, | |
| use_auth_token=True if model_args.use_auth_token else None, | |
| ) | |
| elif model_args.model_name_or_path: | |
| config = AutoConfig.from_pretrained( | |
| model_args.model_name_or_path, | |
| cache_dir=model_args.cache_dir, | |
| use_auth_token=True if model_args.use_auth_token else None, | |
| ) | |
| else: | |
| config = CONFIG_MAPPING[model_args.model_type]() | |
| logger.warning("You are instantiating a new config instance from scratch.") | |
| if model_args.tokenizer_name: | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_args.tokenizer_name, | |
| cache_dir=model_args.cache_dir, | |
| use_fast=model_args.use_fast_tokenizer, | |
| use_auth_token=True if model_args.use_auth_token else None, | |
| ) | |
| elif model_args.model_name_or_path: | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_args.model_name_or_path, | |
| cache_dir=model_args.cache_dir, | |
| use_fast=model_args.use_fast_tokenizer, | |
| use_auth_token=True if model_args.use_auth_token else None, | |
| ) | |
| else: | |
| raise ValueError( | |
| "You are instantiating a new tokenizer from scratch. This is not supported by this script." | |
| "You can do it from another script, save it, and load it from here, using --tokenizer_name." | |
| ) | |
| # Preprocessing the datasets. | |
| # First we tokenize all the texts. | |
| if training_args.do_train: | |
| column_names = datasets["train"].column_names | |
| else: | |
| column_names = datasets["validation"].column_names | |
| text_column_name = "text" if "text" in column_names else column_names[0] | |
| max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) | |
| if data_args.line_by_line: | |
| # When using line_by_line, we just tokenize each nonempty line. | |
| padding = "max_length" if data_args.pad_to_max_length else False | |
| def tokenize_function(examples): | |
| # Remove empty lines | |
| examples = [line for line in examples if len(line) > 0 and not line.isspace()] | |
| return tokenizer( | |
| examples, | |
| return_special_tokens_mask=True, | |
| padding=padding, | |
| truncation=True, | |
| max_length=max_seq_length, | |
| ) | |
| tokenized_datasets = datasets.map( | |
| tokenize_function, | |
| input_columns=[text_column_name], | |
| batched=True, | |
| num_proc=data_args.preprocessing_num_workers, | |
| remove_columns=column_names, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| ) | |
| else: | |
| # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts. | |
| # We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more | |
| # efficient when it receives the `special_tokens_mask`. | |
| def tokenize_function(examples): | |
| return tokenizer(examples[text_column_name], return_special_tokens_mask=True) | |
| tokenized_datasets = datasets.map( | |
| tokenize_function, | |
| batched=True, | |
| num_proc=data_args.preprocessing_num_workers, | |
| remove_columns=column_names, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| ) | |
| # Main data processing function that will concatenate all texts from our dataset and generate chunks of | |
| # max_seq_length. | |
| def group_texts(examples): | |
| # Concatenate all texts. | |
| concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()} | |
| total_length = len(concatenated_examples[list(examples.keys())[0]]) | |
| # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can | |
| # customize this part to your needs. | |
| if total_length >= max_seq_length: | |
| total_length = (total_length // max_seq_length) * max_seq_length | |
| # Split by chunks of max_len. | |
| result = { | |
| k: [t[i : i + max_seq_length] for i in range(0, total_length, max_seq_length)] | |
| for k, t in concatenated_examples.items() | |
| } | |
| return result | |
| # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a | |
| # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value | |
| # might be slower to preprocess. | |
| # | |
| # To speed up this part, we use multiprocessing. See the documentation of the map method for more information: | |
| # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map | |
| tokenized_datasets = tokenized_datasets.map( | |
| group_texts, | |
| batched=True, | |
| num_proc=data_args.preprocessing_num_workers, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| ) | |
| # Enable tensorboard only on the master node | |
| has_tensorboard = is_tensorboard_available() | |
| if has_tensorboard and jax.process_index() == 0: | |
| try: | |
| from flax.metrics.tensorboard import SummaryWriter | |
| summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir)) | |
| except ImportError as ie: | |
| has_tensorboard = False | |
| logger.warning( | |
| f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" | |
| ) | |
| else: | |
| logger.warning( | |
| "Unable to display metrics through TensorBoard because the package is not installed: " | |
| "Please run pip install tensorboard to enable." | |
| ) | |
| # Data collator | |
| # This one will take care of randomly masking the tokens. | |
| data_collator = FlaxDataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=data_args.mlm_probability) | |
| # Initialize our training | |
| rng = jax.random.PRNGKey(training_args.seed) | |
| dropout_rngs = jax.random.split(rng, jax.local_device_count()) | |
| if model_args.model_name_or_path: | |
| model = FlaxAutoModelForMaskedLM.from_pretrained( | |
| model_args.model_name_or_path, | |
| config=config, | |
| seed=training_args.seed, | |
| dtype=getattr(jnp, model_args.dtype), | |
| use_auth_token=True if model_args.use_auth_token else None, | |
| ) | |
| else: | |
| model = FlaxAutoModelForMaskedLM.from_config( | |
| config, | |
| seed=training_args.seed, | |
| dtype=getattr(jnp, model_args.dtype), | |
| ) | |
| if training_args.gradient_checkpointing: | |
| model.enable_gradient_checkpointing() | |
| # Store some constant | |
| num_epochs = int(training_args.num_train_epochs) | |
| train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() | |
| per_device_eval_batch_size = int(training_args.per_device_eval_batch_size) | |
| eval_batch_size = per_device_eval_batch_size * jax.device_count() | |
| num_train_steps = len(tokenized_datasets["train"]) // train_batch_size * num_epochs | |
| # Create learning rate schedule | |
| warmup_fn = optax.linear_schedule( | |
| init_value=0.0, end_value=training_args.learning_rate, transition_steps=training_args.warmup_steps | |
| ) | |
| decay_fn = optax.linear_schedule( | |
| init_value=training_args.learning_rate, | |
| end_value=0, | |
| transition_steps=num_train_steps - training_args.warmup_steps, | |
| ) | |
| linear_decay_lr_schedule_fn = optax.join_schedules( | |
| schedules=[warmup_fn, decay_fn], boundaries=[training_args.warmup_steps] | |
| ) | |
| # We use Optax's "masking" functionality to not apply weight decay | |
| # to bias and LayerNorm scale parameters. decay_mask_fn returns a | |
| # mask boolean with the same structure as the parameters. | |
| # The mask is True for parameters that should be decayed. | |
| def decay_mask_fn(params): | |
| flat_params = traverse_util.flatten_dict(params) | |
| # find out all LayerNorm parameters | |
| layer_norm_candidates = ["layernorm", "layer_norm", "ln"] | |
| layer_norm_named_params = { | |
| layer[-2:] | |
| for layer_norm_name in layer_norm_candidates | |
| for layer in flat_params.keys() | |
| if layer_norm_name in "".join(layer).lower() | |
| } | |
| flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_named_params) for path in flat_params} | |
| return traverse_util.unflatten_dict(flat_mask) | |
| # create adam optimizer | |
| if training_args.adafactor: | |
| # We use the default parameters here to initialize adafactor, | |
| # For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74 | |
| optimizer = optax.adafactor( | |
| learning_rate=linear_decay_lr_schedule_fn, | |
| ) | |
| else: | |
| optimizer = optax.adamw( | |
| learning_rate=linear_decay_lr_schedule_fn, | |
| b1=training_args.adam_beta1, | |
| b2=training_args.adam_beta2, | |
| eps=training_args.adam_epsilon, | |
| weight_decay=training_args.weight_decay, | |
| mask=decay_mask_fn, | |
| ) | |
| # Setup train state | |
| state = train_state.TrainState.create(apply_fn=model.__call__, params=model.params, tx=optimizer) | |
| # Define gradient update step fn | |
| def train_step(state, batch, dropout_rng): | |
| dropout_rng, new_dropout_rng = jax.random.split(dropout_rng) | |
| def loss_fn(params): | |
| labels = batch.pop("labels") | |
| logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] | |
| # compute loss, ignore padded input tokens | |
| label_mask = jnp.where(labels > 0, 1.0, 0.0) | |
| loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask | |
| # take average | |
| loss = loss.sum() | |
| num_labels = label_mask.sum() | |
| return loss, num_labels | |
| grad_fn = jax.value_and_grad(loss_fn, has_aux=True) | |
| (loss, num_labels), grad = grad_fn(state.params) | |
| num_labels = jax.lax.psum(num_labels, "batch") | |
| # true loss = total loss / total samples | |
| loss = jax.lax.psum(loss, "batch") | |
| loss = jax.tree_util.tree_map(lambda x: x / num_labels, loss) | |
| # true grad = total grad / total samples | |
| grad = jax.lax.psum(grad, "batch") | |
| grad = jax.tree_util.tree_map(lambda x: x / num_labels, grad) | |
| new_state = state.apply_gradients(grads=grad) | |
| metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)} | |
| return new_state, metrics, new_dropout_rng | |
| # Create parallel version of the train step | |
| p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,)) | |
| # Define eval fn | |
| def eval_step(params, batch): | |
| labels = batch.pop("labels") | |
| logits = model(**batch, params=params, train=False)[0] | |
| # compute loss, ignore padded input tokens | |
| label_mask = jnp.where(labels > 0, 1.0, 0.0) | |
| loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) * label_mask | |
| # compute accuracy | |
| accuracy = jnp.equal(jnp.argmax(logits, axis=-1), labels) * label_mask | |
| # summarize metrics | |
| metrics = {"loss": loss.sum(), "accuracy": accuracy.sum(), "normalizer": label_mask.sum()} | |
| metrics = jax.lax.psum(metrics, axis_name="batch") | |
| return metrics | |
| p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0,)) | |
| # Replicate the train state on each device | |
| state = jax_utils.replicate(state) | |
| train_time = 0 | |
| epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0) | |
| for epoch in epochs: | |
| # ======================== Training ================================ | |
| train_start = time.time() | |
| train_metrics = [] | |
| # Create sampling rng | |
| rng, input_rng = jax.random.split(rng) | |
| # Generate an epoch by shuffling sampling indices from the train dataset | |
| num_train_samples = len(tokenized_datasets["train"]) | |
| # Avoid using jax.numpy here in case of TPU training | |
| train_samples_idx = np.random.permutation(np.arange(num_train_samples)) | |
| train_batch_idx = generate_batch_splits(train_samples_idx, train_batch_size) | |
| # Gather the indexes for creating the batch and do a training step | |
| for step, batch_idx in enumerate(tqdm(train_batch_idx, desc="Training...", position=1)): | |
| samples = [tokenized_datasets["train"][int(idx)] for idx in batch_idx] | |
| model_inputs = data_collator(samples, pad_to_multiple_of=16) | |
| # Model forward | |
| model_inputs = shard(model_inputs.data) | |
| state, train_metric, dropout_rngs = p_train_step(state, model_inputs, dropout_rngs) | |
| train_metrics.append(train_metric) | |
| cur_step = epoch * (num_train_samples // train_batch_size) + step | |
| if cur_step % training_args.logging_steps == 0 and cur_step > 0: | |
| # Save metrics | |
| train_metric = jax_utils.unreplicate(train_metric) | |
| train_time += time.time() - train_start | |
| if has_tensorboard and jax.process_index() == 0: | |
| write_train_metric(summary_writer, train_metrics, train_time, cur_step) | |
| epochs.write( | |
| f"Step... ({cur_step} | Loss: {train_metric['loss']}, Learning Rate:" | |
| f" {train_metric['learning_rate']})" | |
| ) | |
| train_metrics = [] | |
| if cur_step % training_args.eval_steps == 0 and cur_step > 0: | |
| # ======================== Evaluating ============================== | |
| num_eval_samples = len(tokenized_datasets["validation"]) | |
| # Avoid using jax.numpy here in case of TPU training | |
| eval_samples_idx = np.arange(num_eval_samples) | |
| eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size, drop_last=False) | |
| eval_metrics = [] | |
| for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)): | |
| samples = [tokenized_datasets["validation"][int(idx)] for idx in batch_idx] | |
| model_inputs = data_collator(samples, pad_to_multiple_of=16) | |
| # Model forward | |
| metrics = pad_shard_unpad(p_eval_step, static_return=True)( | |
| state.params, model_inputs.data, min_device_batch=per_device_eval_batch_size | |
| ) | |
| eval_metrics.append(metrics) | |
| # normalize eval metrics | |
| eval_metrics = get_metrics(eval_metrics) | |
| eval_metrics = jax.tree_util.tree_map(jnp.sum, eval_metrics) | |
| eval_normalizer = eval_metrics.pop("normalizer") | |
| eval_metrics = jax.tree_util.tree_map(lambda x: x / eval_normalizer, eval_metrics) | |
| # Update progress bar | |
| epochs.desc = f"Step... ({cur_step} | Loss: {eval_metrics['loss']}, Acc: {eval_metrics['accuracy']})" | |
| # Save metrics | |
| if has_tensorboard and jax.process_index() == 0: | |
| write_eval_metric(summary_writer, eval_metrics, cur_step) | |
| if cur_step % training_args.save_steps == 0 and cur_step > 0: | |
| # save checkpoint after each epoch and push checkpoint to the hub | |
| if jax.process_index() == 0: | |
| params = jax.device_get(jax.tree_util.tree_map(lambda x: x[0], state.params)) | |
| model.save_pretrained(training_args.output_dir, params=params) | |
| tokenizer.save_pretrained(training_args.output_dir) | |
| if training_args.push_to_hub: | |
| repo.push_to_hub(commit_message=f"Saving weights and logs of step {cur_step}", blocking=False) | |
| # Eval after training | |
| if training_args.do_eval: | |
| num_eval_samples = len(tokenized_datasets["validation"]) | |
| # Avoid using jax.numpy here in case of TPU training | |
| eval_samples_idx = np.arange(num_eval_samples) | |
| eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size, drop_last=False) | |
| eval_metrics = [] | |
| for _, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=2)): | |
| samples = [tokenized_datasets["validation"][int(idx)] for idx in batch_idx] | |
| model_inputs = data_collator(samples, pad_to_multiple_of=16) | |
| # Model forward | |
| metrics = pad_shard_unpad(p_eval_step, static_return=True)( | |
| state.params, model_inputs.data, min_device_batch=per_device_eval_batch_size | |
| ) | |
| eval_metrics.append(metrics) | |
| # normalize eval metrics | |
| eval_metrics = get_metrics(eval_metrics) | |
| eval_metrics = jax.tree_util.tree_map(lambda metric: jnp.sum(metric).item(), eval_metrics) | |
| eval_normalizer = eval_metrics.pop("normalizer") | |
| eval_metrics = jax.tree_util.tree_map(lambda x: x / eval_normalizer, eval_metrics) | |
| try: | |
| perplexity = math.exp(eval_metrics["loss"]) | |
| except OverflowError: | |
| perplexity = float("inf") | |
| eval_metrics["perplexity"] = perplexity | |
| if jax.process_index() == 0: | |
| eval_metrics = {f"eval_{metric_name}": value for metric_name, value in eval_metrics.items()} | |
| path = os.path.join(training_args.output_dir, "eval_results.json") | |
| with open(path, "w") as f: | |
| json.dump(eval_metrics, f, indent=4, sort_keys=True) | |
| if __name__ == "__main__": | |
| main() | |