Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python3 | |
| import logging | |
| import sys | |
| from dataclasses import dataclass, field | |
| from typing import Any, Dict, List, Optional, Union | |
| import librosa | |
| import torch | |
| from datasets import DatasetDict, load_dataset | |
| from packaging import version | |
| from torch import nn | |
| from transformers import ( | |
| HfArgumentParser, | |
| Trainer, | |
| TrainingArguments, | |
| Wav2Vec2Config, | |
| Wav2Vec2FeatureExtractor, | |
| Wav2Vec2ForPreTraining, | |
| is_apex_available, | |
| trainer_utils, | |
| ) | |
| from transformers.models.wav2vec2.modeling_wav2vec2 import _compute_mask_indices | |
| if is_apex_available(): | |
| from apex import amp | |
| if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): | |
| _is_native_amp_available = True | |
| from torch.cuda.amp import autocast | |
| logger = logging.getLogger(__name__) | |
| class ModelArguments: | |
| """ | |
| Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | |
| """ | |
| model_name_or_path: str = field( | |
| metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} | |
| ) | |
| cache_dir: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, | |
| ) | |
| freeze_feature_extractor: Optional[bool] = field( | |
| default=True, metadata={"help": "Whether to freeze the feature extractor layers of the model."} | |
| ) | |
| verbose_logging: Optional[bool] = field( | |
| default=False, | |
| metadata={"help": "Whether to log verbose messages or not."}, | |
| ) | |
| max_gumbel_temperature: Optional[float] = field( | |
| default=2.0, metadata={"help": "Maximum temperature for gumbel softmax."} | |
| ) | |
| min_gumbel_temperature: Optional[float] = field( | |
| default=0.5, metadata={"help": "Minimum temperature for gumbel softmax."} | |
| ) | |
| gumbel_temperature_decay: Optional[float] = field( | |
| default=0.999995, metadata={"help": "Decay of gumbel temperature during training."} | |
| ) | |
| def configure_logger(model_args: ModelArguments, training_args: TrainingArguments): | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| handlers=[logging.StreamHandler(sys.stdout)], | |
| ) | |
| logging_level = logging.WARNING | |
| if model_args.verbose_logging: | |
| logging_level = logging.DEBUG | |
| elif trainer_utils.is_main_process(training_args.local_rank): | |
| logging_level = logging.INFO | |
| logger.setLevel(logging_level) | |
| class DataTrainingArguments: | |
| """ | |
| Arguments pertaining to what data we are going to input our model for training and eval. | |
| Using `HfArgumentParser` we can turn this class | |
| into argparse arguments to be able to specify them on | |
| the command line. | |
| """ | |
| dataset_name: str = field( | |
| default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} | |
| ) | |
| dataset_config_name: Optional[str] = field( | |
| default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} | |
| ) | |
| train_split_name: Optional[str] = field( | |
| default="train", | |
| metadata={ | |
| "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" | |
| }, | |
| ) | |
| validation_split_name: Optional[str] = field( | |
| default="validation", | |
| metadata={ | |
| "help": ( | |
| "The name of the validation data set split to use (via the datasets library). Defaults to 'validation'" | |
| ) | |
| }, | |
| ) | |
| speech_file_column: Optional[str] = field( | |
| default="file", | |
| metadata={"help": "Column in the dataset that contains speech file path. Defaults to 'file'"}, | |
| ) | |
| overwrite_cache: bool = field( | |
| default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."} | |
| ) | |
| validation_split_percentage: Optional[int] = field( | |
| default=1, | |
| metadata={ | |
| "help": "The percentage of the train set used as validation set in case there's no validation split" | |
| }, | |
| ) | |
| preprocessing_num_workers: Optional[int] = field( | |
| default=None, | |
| metadata={"help": "The number of processes to use for the preprocessing."}, | |
| ) | |
| max_duration_in_seconds: Optional[float] = field( | |
| default=20.0, metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"} | |
| ) | |
| class DataCollatorForWav2Vec2Pretraining: | |
| """ | |
| Data collator that will dynamically pad the inputs received and prepare masked indices | |
| for self-supervised pretraining. | |
| Args: | |
| model (:class:`~transformers.Wav2Vec2ForPreTraining`): | |
| The Wav2Vec2 model used for pretraining. The data collator needs to have access | |
| to config and ``_get_feat_extract_output_lengths`` function for correct padding. | |
| feature_extractor (:class:`~transformers.Wav2Vec2FeatureExtractor`): | |
| The processor used for proccessing the data. | |
| padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): | |
| Select a strategy to pad the returned sequences (according to the model's padding side and padding index) | |
| among: | |
| * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single | |
| sequence if provided). | |
| * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the | |
| maximum acceptable input length for the model if that argument is not provided. | |
| * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of | |
| different lengths). | |
| max_length (:obj:`int`, `optional`): | |
| Maximum length of the ``input_values`` of the returned list and optionally padding length (see above). | |
| pad_to_multiple_of (:obj:`int`, `optional`): | |
| If set will pad the sequence to a multiple of the provided value. | |
| This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= | |
| 7.5 (Volta). | |
| """ | |
| model: Wav2Vec2ForPreTraining | |
| feature_extractor: Wav2Vec2FeatureExtractor | |
| padding: Union[bool, str] = "longest" | |
| pad_to_multiple_of: Optional[int] = None | |
| max_length: Optional[int] = None | |
| def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: | |
| # reformat list to dict and set to pytorch format | |
| batch = self.feature_extractor.pad( | |
| features, | |
| max_length=self.max_length, | |
| padding=self.padding, | |
| pad_to_multiple_of=self.pad_to_multiple_of, | |
| return_tensors="pt", | |
| ) | |
| mask_indices_seq_length = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1]) | |
| batch_size = batch["input_values"].shape[0] | |
| # make sure that no loss is computed on padded inputs | |
| if batch["attention_mask"] is not None: | |
| # compute real output lengths according to convolution formula | |
| output_lengths = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1)).to( | |
| torch.long | |
| ) | |
| attention_mask = torch.zeros( | |
| (batch_size, mask_indices_seq_length), dtype=torch.long, device=batch["input_values"].device | |
| ) | |
| # these two operations makes sure that all values | |
| # before the output lengths indices are attended to | |
| attention_mask[ | |
| (torch.arange(attention_mask.shape[0], device=batch["input_values"].device), output_lengths - 1) | |
| ] = 1 | |
| attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() | |
| # sample randomly masked indices | |
| batch["mask_time_indices"] = _compute_mask_indices( | |
| (batch_size, mask_indices_seq_length), | |
| self.model.config.mask_time_prob, | |
| self.model.config.mask_time_length, | |
| attention_mask=attention_mask, | |
| min_masks=2, | |
| ) | |
| return batch | |
| class Wav2Vec2PreTrainer(Trainer): | |
| """ | |
| Subclassed :class:`~transformers.Trainer` for Wav2Vec2-like pretraining. Trainer can decay gumbel softmax temperature during training. | |
| """ | |
| def __init__(self, *args, max_gumbel_temp=1, min_gumbel_temp=0, gumbel_temp_decay=1.0, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| self.num_update_step = 0 | |
| self.max_gumbel_temp = max_gumbel_temp | |
| self.min_gumbel_temp = min_gumbel_temp | |
| self.gumbel_temp_decay = gumbel_temp_decay | |
| def training_step(self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor: | |
| """ | |
| Perform a training step on a batch of inputs. | |
| Subclass and override to inject custom behavior. | |
| Args: | |
| model (:obj:`nn.Module`): | |
| The model to train. | |
| inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`): | |
| The inputs and targets of the model. | |
| The dictionary will be unpacked before being fed to the model. Most models expect the targets under the | |
| argument :obj:`labels`. Check your model's documentation for all accepted arguments. | |
| Return: | |
| :obj:`torch.Tensor`: The tensor with training loss on this batch. | |
| """ | |
| model.train() | |
| inputs = self._prepare_inputs(inputs) | |
| if self.use_amp: | |
| with autocast(): | |
| loss = self.compute_loss(model, inputs) | |
| else: | |
| loss = self.compute_loss(model, inputs) | |
| if self.args.n_gpu > 1 or self.deepspeed: | |
| if model.module.config.ctc_loss_reduction == "mean": | |
| loss = loss.mean() | |
| elif model.module.config.ctc_loss_reduction == "sum": | |
| loss = loss.sum() / (inputs["mask_time_indices"]).sum() | |
| else: | |
| raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']") | |
| if self.args.gradient_accumulation_steps > 1: | |
| loss = loss / self.args.gradient_accumulation_steps | |
| if self.use_amp: | |
| self.scaler.scale(loss).backward() | |
| elif self.use_apex: | |
| with amp.scale_loss(loss, self.optimizer) as scaled_loss: | |
| scaled_loss.backward() | |
| elif self.deepspeed: | |
| self.deepspeed.backward(loss) | |
| else: | |
| loss.backward() | |
| self.num_update_step += 1 | |
| # make sure gumbel softmax temperature is decayed | |
| if self.args.n_gpu > 1 or self.deepspeed: | |
| model.module.set_gumbel_temperature( | |
| max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp) | |
| ) | |
| else: | |
| model.set_gumbel_temperature( | |
| max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp) | |
| ) | |
| return loss.detach() | |
| def main(): | |
| # See all possible arguments in src/transformers/training_args.py | |
| # or by passing the --help flag to this script. | |
| # We now keep distinct sets of args, for a cleaner separation of concerns. | |
| parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) | |
| model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
| configure_logger(model_args, training_args) | |
| # Downloading and loading a dataset from the hub. | |
| datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir) | |
| if "validation" not in datasets.keys(): | |
| # make sure only "validation" and "train" keys remain" | |
| datasets = DatasetDict() | |
| datasets["validation"] = load_dataset( | |
| data_args.dataset_name, | |
| data_args.dataset_config_name, | |
| split=f"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]", | |
| cache_dir=model_args.cache_dir, | |
| ) | |
| datasets["train"] = load_dataset( | |
| data_args.dataset_name, | |
| data_args.dataset_config_name, | |
| split=f"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]", | |
| cache_dir=model_args.cache_dir, | |
| ) | |
| else: | |
| # make sure only "validation" and "train" keys remain" | |
| datasets = DatasetDict() | |
| datasets["validation"] = load_dataset( | |
| data_args.dataset_name, | |
| data_args.dataset_config_name, | |
| split="validation", | |
| cache_dir=model_args.cache_dir, | |
| ) | |
| datasets["train"] = load_dataset( | |
| data_args.dataset_name, | |
| data_args.dataset_config_name, | |
| split=f"{data_args.train_split_name}", | |
| cache_dir=model_args.cache_dir, | |
| ) | |
| # only normalized-inputs-training is supported | |
| feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( | |
| model_args.model_name_or_path, cache_dir=model_args.cache_dir, do_normalize=True | |
| ) | |
| def prepare_dataset(batch): | |
| # check that all files have the correct sampling rate | |
| batch["speech"], _ = librosa.load(batch[data_args.speech_file_column], sr=feature_extractor.sampling_rate) | |
| return batch | |
| # load audio files into numpy arrays | |
| vectorized_datasets = datasets.map( | |
| prepare_dataset, num_proc=data_args.preprocessing_num_workers, remove_columns=datasets["train"].column_names | |
| ) | |
| # filter audio files that are too long | |
| vectorized_datasets = vectorized_datasets.filter( | |
| lambda data: len(data["speech"]) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate) | |
| ) | |
| def normalize(batch): | |
| return feature_extractor(batch["speech"], sampling_rate=feature_extractor.sampling_rate) | |
| # normalize and transform to `BatchFeatures` | |
| vectorized_datasets = vectorized_datasets.map( | |
| normalize, | |
| batched=True, | |
| num_proc=data_args.preprocessing_num_workers, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| remove_columns=vectorized_datasets["train"].column_names, | |
| ) | |
| # pretraining is only supported for "newer" stable layer norm architecture | |
| # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 | |
| config = Wav2Vec2Config.from_pretrained( | |
| model_args.model_name_or_path, | |
| cache_dir=model_args.cache_dir, | |
| gradient_checkpointing=training_args.gradient_checkpointing, | |
| ) | |
| if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": | |
| raise ValueError( | |
| "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" | |
| " ``config.feat_extract_norm='layer'" | |
| ) | |
| model = Wav2Vec2ForPreTraining(config) | |
| data_collator = DataCollatorForWav2Vec2Pretraining(model=model, feature_extractor=feature_extractor) | |
| trainer = Wav2Vec2PreTrainer( | |
| model=model, | |
| data_collator=data_collator, | |
| args=training_args, | |
| train_dataset=vectorized_datasets["train"], | |
| eval_dataset=vectorized_datasets["validation"], | |
| tokenizer=feature_extractor, | |
| max_gumbel_temp=model_args.max_gumbel_temperature, | |
| min_gumbel_temp=model_args.min_gumbel_temperature, | |
| gumbel_temp_decay=model_args.gumbel_temperature_decay, | |
| ) | |
| trainer.train() | |
| if __name__ == "__main__": | |
| main() | |