Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2020 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import os | |
| import tempfile | |
| import unittest | |
| from transformers import BertConfig, is_torch_available | |
| from transformers.models.auto import get_values | |
| from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device | |
| from ...generation.test_utils import GenerationTesterMixin | |
| from ...test_configuration_common import ConfigTester | |
| from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask | |
| from ...test_pipeline_mixin import PipelineTesterMixin | |
| if is_torch_available(): | |
| import torch | |
| from transformers import ( | |
| MODEL_FOR_PRETRAINING_MAPPING, | |
| BertForMaskedLM, | |
| BertForMultipleChoice, | |
| BertForNextSentencePrediction, | |
| BertForPreTraining, | |
| BertForQuestionAnswering, | |
| BertForSequenceClassification, | |
| BertForTokenClassification, | |
| BertLMHeadModel, | |
| BertModel, | |
| ) | |
| from transformers.models.bert.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_LIST | |
| class BertModelTester: | |
| def __init__( | |
| self, | |
| parent, | |
| batch_size=13, | |
| seq_length=7, | |
| is_training=True, | |
| use_input_mask=True, | |
| use_token_type_ids=True, | |
| use_labels=True, | |
| vocab_size=99, | |
| hidden_size=32, | |
| num_hidden_layers=5, | |
| num_attention_heads=4, | |
| intermediate_size=37, | |
| hidden_act="gelu", | |
| hidden_dropout_prob=0.1, | |
| attention_probs_dropout_prob=0.1, | |
| max_position_embeddings=512, | |
| type_vocab_size=16, | |
| type_sequence_label_size=2, | |
| initializer_range=0.02, | |
| num_labels=3, | |
| num_choices=4, | |
| scope=None, | |
| ): | |
| self.parent = parent | |
| self.batch_size = batch_size | |
| self.seq_length = seq_length | |
| self.is_training = is_training | |
| self.use_input_mask = use_input_mask | |
| self.use_token_type_ids = use_token_type_ids | |
| self.use_labels = use_labels | |
| self.vocab_size = vocab_size | |
| self.hidden_size = hidden_size | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.intermediate_size = intermediate_size | |
| self.hidden_act = hidden_act | |
| self.hidden_dropout_prob = hidden_dropout_prob | |
| self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
| self.max_position_embeddings = max_position_embeddings | |
| self.type_vocab_size = type_vocab_size | |
| self.type_sequence_label_size = type_sequence_label_size | |
| self.initializer_range = initializer_range | |
| self.num_labels = num_labels | |
| self.num_choices = num_choices | |
| self.scope = scope | |
| def prepare_config_and_inputs(self): | |
| input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
| input_mask = None | |
| if self.use_input_mask: | |
| input_mask = random_attention_mask([self.batch_size, self.seq_length]) | |
| token_type_ids = None | |
| if self.use_token_type_ids: | |
| token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) | |
| sequence_labels = None | |
| token_labels = None | |
| choice_labels = None | |
| if self.use_labels: | |
| sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) | |
| token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) | |
| choice_labels = ids_tensor([self.batch_size], self.num_choices) | |
| config = self.get_config() | |
| return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| def get_config(self): | |
| """ | |
| Returns a tiny configuration by default. | |
| """ | |
| return BertConfig( | |
| vocab_size=self.vocab_size, | |
| hidden_size=self.hidden_size, | |
| num_hidden_layers=self.num_hidden_layers, | |
| num_attention_heads=self.num_attention_heads, | |
| intermediate_size=self.intermediate_size, | |
| hidden_act=self.hidden_act, | |
| hidden_dropout_prob=self.hidden_dropout_prob, | |
| attention_probs_dropout_prob=self.attention_probs_dropout_prob, | |
| max_position_embeddings=self.max_position_embeddings, | |
| type_vocab_size=self.type_vocab_size, | |
| is_decoder=False, | |
| initializer_range=self.initializer_range, | |
| ) | |
| def prepare_config_and_inputs_for_decoder(self): | |
| ( | |
| config, | |
| input_ids, | |
| token_type_ids, | |
| input_mask, | |
| sequence_labels, | |
| token_labels, | |
| choice_labels, | |
| ) = self.prepare_config_and_inputs() | |
| config.is_decoder = True | |
| encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) | |
| encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) | |
| return ( | |
| config, | |
| input_ids, | |
| token_type_ids, | |
| input_mask, | |
| sequence_labels, | |
| token_labels, | |
| choice_labels, | |
| encoder_hidden_states, | |
| encoder_attention_mask, | |
| ) | |
| def create_and_check_model( | |
| self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| ): | |
| model = BertModel(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) | |
| result = model(input_ids, token_type_ids=token_type_ids) | |
| result = model(input_ids) | |
| self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
| self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) | |
| def create_and_check_model_as_decoder( | |
| self, | |
| config, | |
| input_ids, | |
| token_type_ids, | |
| input_mask, | |
| sequence_labels, | |
| token_labels, | |
| choice_labels, | |
| encoder_hidden_states, | |
| encoder_attention_mask, | |
| ): | |
| config.add_cross_attention = True | |
| model = BertModel(config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model( | |
| input_ids, | |
| attention_mask=input_mask, | |
| token_type_ids=token_type_ids, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_attention_mask=encoder_attention_mask, | |
| ) | |
| result = model( | |
| input_ids, | |
| attention_mask=input_mask, | |
| token_type_ids=token_type_ids, | |
| encoder_hidden_states=encoder_hidden_states, | |
| ) | |
| result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) | |
| self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) | |
| self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) | |
| def create_and_check_for_causal_lm( | |
| self, | |
| config, | |
| input_ids, | |
| token_type_ids, | |
| input_mask, | |
| sequence_labels, | |
| token_labels, | |
| choice_labels, | |
| encoder_hidden_states, | |
| encoder_attention_mask, | |
| ): | |
| model = BertLMHeadModel(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
| def create_and_check_for_masked_lm( | |
| self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| ): | |
| model = BertForMaskedLM(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
| def create_and_check_model_for_causal_lm_as_decoder( | |
| self, | |
| config, | |
| input_ids, | |
| token_type_ids, | |
| input_mask, | |
| sequence_labels, | |
| token_labels, | |
| choice_labels, | |
| encoder_hidden_states, | |
| encoder_attention_mask, | |
| ): | |
| config.add_cross_attention = True | |
| model = BertLMHeadModel(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model( | |
| input_ids, | |
| attention_mask=input_mask, | |
| token_type_ids=token_type_ids, | |
| labels=token_labels, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_attention_mask=encoder_attention_mask, | |
| ) | |
| result = model( | |
| input_ids, | |
| attention_mask=input_mask, | |
| token_type_ids=token_type_ids, | |
| labels=token_labels, | |
| encoder_hidden_states=encoder_hidden_states, | |
| ) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
| def create_and_check_decoder_model_past_large_inputs( | |
| self, | |
| config, | |
| input_ids, | |
| token_type_ids, | |
| input_mask, | |
| sequence_labels, | |
| token_labels, | |
| choice_labels, | |
| encoder_hidden_states, | |
| encoder_attention_mask, | |
| ): | |
| config.is_decoder = True | |
| config.add_cross_attention = True | |
| model = BertLMHeadModel(config=config).to(torch_device).eval() | |
| # first forward pass | |
| outputs = model( | |
| input_ids, | |
| attention_mask=input_mask, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_attention_mask=encoder_attention_mask, | |
| use_cache=True, | |
| ) | |
| past_key_values = outputs.past_key_values | |
| # create hypothetical multiple next token and extent to next_input_ids | |
| next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) | |
| next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) | |
| # append to next input_ids and | |
| next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) | |
| next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) | |
| output_from_no_past = model( | |
| next_input_ids, | |
| attention_mask=next_attention_mask, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_attention_mask=encoder_attention_mask, | |
| output_hidden_states=True, | |
| )["hidden_states"][0] | |
| output_from_past = model( | |
| next_tokens, | |
| attention_mask=next_attention_mask, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_attention_mask=encoder_attention_mask, | |
| past_key_values=past_key_values, | |
| output_hidden_states=True, | |
| )["hidden_states"][0] | |
| # select random slice | |
| random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
| output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() | |
| output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() | |
| self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) | |
| # test that outputs are equal for slice | |
| self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
| def create_and_check_for_next_sequence_prediction( | |
| self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| ): | |
| model = BertForNextSentencePrediction(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model( | |
| input_ids, | |
| attention_mask=input_mask, | |
| token_type_ids=token_type_ids, | |
| labels=sequence_labels, | |
| ) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) | |
| def create_and_check_for_pretraining( | |
| self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| ): | |
| model = BertForPreTraining(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model( | |
| input_ids, | |
| attention_mask=input_mask, | |
| token_type_ids=token_type_ids, | |
| labels=token_labels, | |
| next_sentence_label=sequence_labels, | |
| ) | |
| self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) | |
| self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) | |
| def create_and_check_for_question_answering( | |
| self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| ): | |
| model = BertForQuestionAnswering(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model( | |
| input_ids, | |
| attention_mask=input_mask, | |
| token_type_ids=token_type_ids, | |
| start_positions=sequence_labels, | |
| end_positions=sequence_labels, | |
| ) | |
| self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) | |
| self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) | |
| def create_and_check_for_sequence_classification( | |
| self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| ): | |
| config.num_labels = self.num_labels | |
| model = BertForSequenceClassification(config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) | |
| def create_and_check_for_token_classification( | |
| self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| ): | |
| config.num_labels = self.num_labels | |
| model = BertForTokenClassification(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) | |
| def create_and_check_for_multiple_choice( | |
| self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels | |
| ): | |
| config.num_choices = self.num_choices | |
| model = BertForMultipleChoice(config=config) | |
| model.to(torch_device) | |
| model.eval() | |
| multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() | |
| multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() | |
| multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() | |
| result = model( | |
| multiple_choice_inputs_ids, | |
| attention_mask=multiple_choice_input_mask, | |
| token_type_ids=multiple_choice_token_type_ids, | |
| labels=choice_labels, | |
| ) | |
| self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| ( | |
| config, | |
| input_ids, | |
| token_type_ids, | |
| input_mask, | |
| sequence_labels, | |
| token_labels, | |
| choice_labels, | |
| ) = config_and_inputs | |
| inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} | |
| return config, inputs_dict | |
| class BertModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
| all_model_classes = ( | |
| ( | |
| BertModel, | |
| BertLMHeadModel, | |
| BertForMaskedLM, | |
| BertForMultipleChoice, | |
| BertForNextSentencePrediction, | |
| BertForPreTraining, | |
| BertForQuestionAnswering, | |
| BertForSequenceClassification, | |
| BertForTokenClassification, | |
| ) | |
| if is_torch_available() | |
| else () | |
| ) | |
| all_generative_model_classes = (BertLMHeadModel,) if is_torch_available() else () | |
| pipeline_model_mapping = ( | |
| { | |
| "feature-extraction": BertModel, | |
| "fill-mask": BertForMaskedLM, | |
| "question-answering": BertForQuestionAnswering, | |
| "text-classification": BertForSequenceClassification, | |
| "text-generation": BertLMHeadModel, | |
| "token-classification": BertForTokenClassification, | |
| "zero-shot": BertForSequenceClassification, | |
| } | |
| if is_torch_available() | |
| else {} | |
| ) | |
| fx_compatible = True | |
| # special case for ForPreTraining model | |
| def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): | |
| inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) | |
| if return_labels: | |
| if model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING): | |
| inputs_dict["labels"] = torch.zeros( | |
| (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device | |
| ) | |
| inputs_dict["next_sentence_label"] = torch.zeros( | |
| self.model_tester.batch_size, dtype=torch.long, device=torch_device | |
| ) | |
| return inputs_dict | |
| def setUp(self): | |
| self.model_tester = BertModelTester(self) | |
| self.config_tester = ConfigTester(self, config_class=BertConfig, hidden_size=37) | |
| def test_config(self): | |
| self.config_tester.run_common_tests() | |
| def test_model(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_model(*config_and_inputs) | |
| def test_model_various_embeddings(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| for type in ["absolute", "relative_key", "relative_key_query"]: | |
| config_and_inputs[0].position_embedding_type = type | |
| self.model_tester.create_and_check_model(*config_and_inputs) | |
| def test_model_as_decoder(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() | |
| self.model_tester.create_and_check_model_as_decoder(*config_and_inputs) | |
| def test_model_as_decoder_with_default_input_mask(self): | |
| # This regression test was failing with PyTorch < 1.3 | |
| ( | |
| config, | |
| input_ids, | |
| token_type_ids, | |
| input_mask, | |
| sequence_labels, | |
| token_labels, | |
| choice_labels, | |
| encoder_hidden_states, | |
| encoder_attention_mask, | |
| ) = self.model_tester.prepare_config_and_inputs_for_decoder() | |
| input_mask = None | |
| self.model_tester.create_and_check_model_as_decoder( | |
| config, | |
| input_ids, | |
| token_type_ids, | |
| input_mask, | |
| sequence_labels, | |
| token_labels, | |
| choice_labels, | |
| encoder_hidden_states, | |
| encoder_attention_mask, | |
| ) | |
| def test_for_causal_lm(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() | |
| self.model_tester.create_and_check_for_causal_lm(*config_and_inputs) | |
| def test_for_masked_lm(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) | |
| def test_for_causal_lm_decoder(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() | |
| self.model_tester.create_and_check_model_for_causal_lm_as_decoder(*config_and_inputs) | |
| def test_decoder_model_past_with_large_inputs(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() | |
| self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) | |
| def test_decoder_model_past_with_large_inputs_relative_pos_emb(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() | |
| config_and_inputs[0].position_embedding_type = "relative_key" | |
| self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) | |
| def test_for_multiple_choice(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) | |
| def test_for_next_sequence_prediction(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_next_sequence_prediction(*config_and_inputs) | |
| def test_for_pretraining(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_pretraining(*config_and_inputs) | |
| def test_for_question_answering(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_question_answering(*config_and_inputs) | |
| def test_for_sequence_classification(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) | |
| def test_for_token_classification(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_for_token_classification(*config_and_inputs) | |
| def test_model_from_pretrained(self): | |
| for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: | |
| model = BertModel.from_pretrained(model_name) | |
| self.assertIsNotNone(model) | |
| def test_torchscript_device_change(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
| for model_class in self.all_model_classes: | |
| # BertForMultipleChoice behaves incorrectly in JIT environments. | |
| if model_class == BertForMultipleChoice: | |
| return | |
| config.torchscript = True | |
| model = model_class(config=config) | |
| inputs_dict = self._prepare_for_class(inputs_dict, model_class) | |
| traced_model = torch.jit.trace( | |
| model, (inputs_dict["input_ids"].to("cpu"), inputs_dict["attention_mask"].to("cpu")) | |
| ) | |
| with tempfile.TemporaryDirectory() as tmp: | |
| torch.jit.save(traced_model, os.path.join(tmp, "bert.pt")) | |
| loaded = torch.jit.load(os.path.join(tmp, "bert.pt"), map_location=torch_device) | |
| loaded(inputs_dict["input_ids"].to(torch_device), inputs_dict["attention_mask"].to(torch_device)) | |
| class BertModelIntegrationTest(unittest.TestCase): | |
| def test_inference_no_head_absolute_embedding(self): | |
| model = BertModel.from_pretrained("bert-base-uncased") | |
| input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) | |
| attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) | |
| with torch.no_grad(): | |
| output = model(input_ids, attention_mask=attention_mask)[0] | |
| expected_shape = torch.Size((1, 11, 768)) | |
| self.assertEqual(output.shape, expected_shape) | |
| expected_slice = torch.tensor([[[0.4249, 0.1008, 0.7531], [0.3771, 0.1188, 0.7467], [0.4152, 0.1098, 0.7108]]]) | |
| self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4)) | |
| def test_inference_no_head_relative_embedding_key(self): | |
| model = BertModel.from_pretrained("zhiheng-huang/bert-base-uncased-embedding-relative-key") | |
| input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) | |
| attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) | |
| with torch.no_grad(): | |
| output = model(input_ids, attention_mask=attention_mask)[0] | |
| expected_shape = torch.Size((1, 11, 768)) | |
| self.assertEqual(output.shape, expected_shape) | |
| expected_slice = torch.tensor( | |
| [[[0.0756, 0.3142, -0.5128], [0.3761, 0.3462, -0.5477], [0.2052, 0.3760, -0.1240]]] | |
| ) | |
| self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4)) | |
| def test_inference_no_head_relative_embedding_key_query(self): | |
| model = BertModel.from_pretrained("zhiheng-huang/bert-base-uncased-embedding-relative-key-query") | |
| input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) | |
| attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) | |
| with torch.no_grad(): | |
| output = model(input_ids, attention_mask=attention_mask)[0] | |
| expected_shape = torch.Size((1, 11, 768)) | |
| self.assertEqual(output.shape, expected_shape) | |
| expected_slice = torch.tensor( | |
| [[[0.6496, 0.3784, 0.8203], [0.8148, 0.5656, 0.2636], [-0.0681, 0.5597, 0.7045]]] | |
| ) | |
| self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4)) | |