Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2021, The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ Testing suite for the PyTorch Blenderbot model. """ | |
| import tempfile | |
| import unittest | |
| from transformers import BlenderbotConfig, is_torch_available | |
| from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device | |
| from transformers.utils import cached_property | |
| from ...generation.test_utils import GenerationTesterMixin | |
| from ...test_configuration_common import ConfigTester | |
| from ...test_modeling_common import ModelTesterMixin, ids_tensor | |
| from ...test_pipeline_mixin import PipelineTesterMixin | |
| if is_torch_available(): | |
| import torch | |
| from transformers import BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotTokenizer | |
| from transformers.models.blenderbot.modeling_blenderbot import ( | |
| BlenderbotDecoder, | |
| BlenderbotEncoder, | |
| BlenderbotForCausalLM, | |
| ) | |
| def prepare_blenderbot_inputs_dict( | |
| config, | |
| input_ids, | |
| decoder_input_ids, | |
| attention_mask=None, | |
| decoder_attention_mask=None, | |
| head_mask=None, | |
| decoder_head_mask=None, | |
| cross_attn_head_mask=None, | |
| ): | |
| if attention_mask is None: | |
| attention_mask = input_ids.ne(config.pad_token_id) | |
| if decoder_attention_mask is None: | |
| decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id) | |
| if head_mask is None: | |
| head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device) | |
| if decoder_head_mask is None: | |
| decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) | |
| if cross_attn_head_mask is None: | |
| cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) | |
| return { | |
| "input_ids": input_ids, | |
| "decoder_input_ids": decoder_input_ids, | |
| "attention_mask": attention_mask, | |
| "decoder_attention_mask": attention_mask, | |
| "head_mask": head_mask, | |
| "decoder_head_mask": decoder_head_mask, | |
| "cross_attn_head_mask": cross_attn_head_mask, | |
| } | |
| class BlenderbotModelTester: | |
| def __init__( | |
| self, | |
| parent, | |
| batch_size=13, | |
| seq_length=7, | |
| is_training=True, | |
| use_labels=False, | |
| vocab_size=99, | |
| hidden_size=16, | |
| num_hidden_layers=2, | |
| num_attention_heads=4, | |
| intermediate_size=4, | |
| hidden_act="gelu", | |
| hidden_dropout_prob=0.1, | |
| attention_probs_dropout_prob=0.1, | |
| max_position_embeddings=20, | |
| eos_token_id=2, | |
| pad_token_id=1, | |
| bos_token_id=0, | |
| ): | |
| self.parent = parent | |
| self.batch_size = batch_size | |
| self.seq_length = seq_length | |
| self.is_training = is_training | |
| self.use_labels = use_labels | |
| self.vocab_size = vocab_size | |
| self.hidden_size = hidden_size | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.intermediate_size = intermediate_size | |
| self.hidden_act = hidden_act | |
| self.hidden_dropout_prob = hidden_dropout_prob | |
| self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
| self.max_position_embeddings = max_position_embeddings | |
| self.eos_token_id = eos_token_id | |
| self.pad_token_id = pad_token_id | |
| self.bos_token_id = bos_token_id | |
| # forcing a certain token to be generated, sets all other tokens to -inf | |
| # if however the token to be generated is already at -inf then it can lead token | |
| # `nan` values and thus break generation | |
| self.forced_bos_token_id = None | |
| self.forced_eos_token_id = None | |
| def prepare_config_and_inputs(self): | |
| input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp( | |
| 3, | |
| ) | |
| input_ids[:, -1] = self.eos_token_id # Eos Token | |
| decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) | |
| config = self.get_config() | |
| inputs_dict = prepare_blenderbot_inputs_dict(config, input_ids, decoder_input_ids) | |
| return config, inputs_dict | |
| def get_config(self): | |
| return BlenderbotConfig( | |
| vocab_size=self.vocab_size, | |
| d_model=self.hidden_size, | |
| encoder_layers=self.num_hidden_layers, | |
| decoder_layers=self.num_hidden_layers, | |
| encoder_attention_heads=self.num_attention_heads, | |
| decoder_attention_heads=self.num_attention_heads, | |
| encoder_ffn_dim=self.intermediate_size, | |
| decoder_ffn_dim=self.intermediate_size, | |
| dropout=self.hidden_dropout_prob, | |
| attention_dropout=self.attention_probs_dropout_prob, | |
| max_position_embeddings=self.max_position_embeddings, | |
| eos_token_id=self.eos_token_id, | |
| bos_token_id=self.bos_token_id, | |
| pad_token_id=self.pad_token_id, | |
| forced_bos_token_id=self.forced_bos_token_id, | |
| forced_eos_token_id=self.forced_eos_token_id, | |
| ) | |
| def get_pipeline_config(self): | |
| config = self.get_config() | |
| config.max_position_embeddings = 100 | |
| config.vocab_size = 300 | |
| return config | |
| def prepare_config_and_inputs_for_common(self): | |
| config, inputs_dict = self.prepare_config_and_inputs() | |
| return config, inputs_dict | |
| def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): | |
| model = BlenderbotModel(config=config).get_decoder().to(torch_device).eval() | |
| input_ids = inputs_dict["input_ids"] | |
| attention_mask = inputs_dict["attention_mask"] | |
| head_mask = inputs_dict["head_mask"] | |
| # first forward pass | |
| outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True) | |
| output, past_key_values = outputs.to_tuple() | |
| # create hypothetical multiple next token and extent to next_input_ids | |
| next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) | |
| next_attn_mask = ids_tensor((self.batch_size, 3), 2) | |
| # append to next input_ids and | |
| next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) | |
| next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) | |
| output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] | |
| output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ | |
| "last_hidden_state" | |
| ] | |
| # select random slice | |
| random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
| output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() | |
| output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() | |
| self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) | |
| # test that outputs are equal for slice | |
| self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) | |
| def check_encoder_decoder_model_standalone(self, config, inputs_dict): | |
| model = BlenderbotModel(config=config).to(torch_device).eval() | |
| outputs = model(**inputs_dict) | |
| encoder_last_hidden_state = outputs.encoder_last_hidden_state | |
| last_hidden_state = outputs.last_hidden_state | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| encoder = model.get_encoder() | |
| encoder.save_pretrained(tmpdirname) | |
| encoder = BlenderbotEncoder.from_pretrained(tmpdirname).to(torch_device) | |
| encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[ | |
| 0 | |
| ] | |
| self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| decoder = model.get_decoder() | |
| decoder.save_pretrained(tmpdirname) | |
| decoder = BlenderbotDecoder.from_pretrained(tmpdirname).to(torch_device) | |
| last_hidden_state_2 = decoder( | |
| input_ids=inputs_dict["decoder_input_ids"], | |
| attention_mask=inputs_dict["decoder_attention_mask"], | |
| encoder_hidden_states=encoder_last_hidden_state, | |
| encoder_attention_mask=inputs_dict["attention_mask"], | |
| )[0] | |
| self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3) | |
| class BlenderbotModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): | |
| all_model_classes = (BlenderbotModel, BlenderbotForConditionalGeneration) if is_torch_available() else () | |
| all_generative_model_classes = (BlenderbotForConditionalGeneration,) if is_torch_available() else () | |
| pipeline_model_mapping = ( | |
| { | |
| "conversational": BlenderbotForConditionalGeneration, | |
| "feature-extraction": BlenderbotModel, | |
| "summarization": BlenderbotForConditionalGeneration, | |
| "text-generation": BlenderbotForCausalLM, | |
| "text2text-generation": BlenderbotForConditionalGeneration, | |
| "translation": BlenderbotForConditionalGeneration, | |
| } | |
| if is_torch_available() | |
| else {} | |
| ) | |
| is_encoder_decoder = True | |
| fx_compatible = True | |
| test_pruning = False | |
| test_missing_keys = False | |
| def setUp(self): | |
| self.model_tester = BlenderbotModelTester(self) | |
| self.config_tester = ConfigTester(self, config_class=BlenderbotConfig) | |
| def test_config(self): | |
| self.config_tester.run_common_tests() | |
| def test_save_load_strict(self): | |
| config, inputs_dict = self.model_tester.prepare_config_and_inputs() | |
| for model_class in self.all_model_classes: | |
| model = model_class(config) | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| model.save_pretrained(tmpdirname) | |
| model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) | |
| self.assertEqual(info["missing_keys"], []) | |
| def test_decoder_model_past_with_large_inputs(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) | |
| def test_encoder_decoder_model_standalone(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() | |
| self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs) | |
| def test_generate_fp16(self): | |
| config, input_dict = self.model_tester.prepare_config_and_inputs() | |
| input_ids = input_dict["input_ids"] | |
| attention_mask = input_ids.ne(1).to(torch_device) | |
| model = BlenderbotForConditionalGeneration(config).eval().to(torch_device) | |
| if torch_device == "cuda": | |
| model.half() | |
| model.generate(input_ids, attention_mask=attention_mask) | |
| model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3) | |
| def assert_tensors_close(a, b, atol=1e-12, prefix=""): | |
| """If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error.""" | |
| if a is None and b is None: | |
| return True | |
| try: | |
| if torch.allclose(a, b, atol=atol): | |
| return True | |
| raise | |
| except Exception: | |
| pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item() | |
| if a.numel() > 100: | |
| msg = f"tensor values are {pct_different:.1%} percent different." | |
| else: | |
| msg = f"{a} != {b}" | |
| if prefix: | |
| msg = prefix + ": " + msg | |
| raise AssertionError(msg) | |
| class Blenderbot3BIntegrationTests(unittest.TestCase): | |
| ckpt = "facebook/blenderbot-3B" | |
| def tokenizer(self): | |
| return BlenderbotTokenizer.from_pretrained(self.ckpt) | |
| def test_generation_from_short_input_same_as_parlai_3B(self): | |
| FASTER_GEN_KWARGS = {"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25} | |
| TOK_DECODE_KW = {"skip_special_tokens": True, "clean_up_tokenization_spaces": True} | |
| torch.cuda.empty_cache() | |
| model = BlenderbotForConditionalGeneration.from_pretrained(self.ckpt).half().to(torch_device) | |
| src_text = ["Sam"] | |
| model_inputs = self.tokenizer(src_text, return_tensors="pt").to(torch_device) | |
| generated_utterances = model.generate(**model_inputs, **FASTER_GEN_KWARGS) | |
| tgt_text = 'Sam is a great name. It means "sun" in Gaelic.' | |
| generated_txt = self.tokenizer.batch_decode(generated_utterances, **TOK_DECODE_KW) | |
| assert generated_txt[0].strip() == tgt_text | |
| src_text = ( | |
| "Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel" | |
| " like i'm going to throw up.\nand why is that?" | |
| ) | |
| model_inputs = self.tokenizer([src_text], return_tensors="pt").to(torch_device) | |
| generated_ids = model.generate(**model_inputs, **FASTER_GEN_KWARGS)[0] | |
| reply = self.tokenizer.decode(generated_ids, **TOK_DECODE_KW) | |
| assert "I think it's because we are so worried about what people think of us." == reply.strip() | |
| del model | |
| class BlenderbotStandaloneDecoderModelTester: | |
| def __init__( | |
| self, | |
| parent, | |
| vocab_size=99, | |
| batch_size=13, | |
| d_model=16, | |
| decoder_seq_length=7, | |
| is_training=True, | |
| is_decoder=True, | |
| use_attention_mask=True, | |
| use_cache=False, | |
| use_labels=True, | |
| decoder_start_token_id=2, | |
| decoder_ffn_dim=32, | |
| decoder_layers=4, | |
| encoder_attention_heads=4, | |
| decoder_attention_heads=4, | |
| max_position_embeddings=30, | |
| is_encoder_decoder=False, | |
| encoder_no_repeat_ngram_size=0, | |
| pad_token_id=0, | |
| bos_token_id=1, | |
| eos_token_id=2, | |
| scope=None, | |
| ): | |
| self.parent = parent | |
| self.batch_size = batch_size | |
| self.decoder_seq_length = decoder_seq_length | |
| # For common tests | |
| self.seq_length = self.decoder_seq_length | |
| self.is_training = is_training | |
| self.use_attention_mask = use_attention_mask | |
| self.use_labels = use_labels | |
| self.vocab_size = vocab_size | |
| self.d_model = d_model | |
| self.hidden_size = d_model | |
| self.num_hidden_layers = decoder_layers | |
| self.decoder_layers = decoder_layers | |
| self.decoder_ffn_dim = decoder_ffn_dim | |
| self.encoder_attention_heads = encoder_attention_heads | |
| self.decoder_attention_heads = decoder_attention_heads | |
| self.num_attention_heads = decoder_attention_heads | |
| self.eos_token_id = eos_token_id | |
| self.bos_token_id = bos_token_id | |
| self.pad_token_id = pad_token_id | |
| self.decoder_start_token_id = decoder_start_token_id | |
| self.use_cache = use_cache | |
| self.max_position_embeddings = max_position_embeddings | |
| self.is_encoder_decoder = is_encoder_decoder | |
| self.encoder_no_repeat_ngram_size = encoder_no_repeat_ngram_size | |
| self.scope = None | |
| self.decoder_key_length = decoder_seq_length | |
| self.base_model_out_len = 2 | |
| self.decoder_attention_idx = 1 | |
| def prepare_config_and_inputs(self): | |
| input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) | |
| attention_mask = None | |
| if self.use_attention_mask: | |
| attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2) | |
| lm_labels = None | |
| if self.use_labels: | |
| lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) | |
| config = BlenderbotConfig( | |
| vocab_size=self.vocab_size, | |
| d_model=self.d_model, | |
| decoder_layers=self.decoder_layers, | |
| decoder_ffn_dim=self.decoder_ffn_dim, | |
| encoder_attention_heads=self.encoder_attention_heads, | |
| decoder_attention_heads=self.decoder_attention_heads, | |
| eos_token_id=self.eos_token_id, | |
| bos_token_id=self.bos_token_id, | |
| use_cache=self.use_cache, | |
| pad_token_id=self.pad_token_id, | |
| decoder_start_token_id=self.decoder_start_token_id, | |
| max_position_embeddings=self.max_position_embeddings, | |
| is_encoder_decoder=self.is_encoder_decoder, | |
| encoder_no_repeat_ngram_size=self.encoder_no_repeat_ngram_size, | |
| ) | |
| return ( | |
| config, | |
| input_ids, | |
| attention_mask, | |
| lm_labels, | |
| ) | |
| def create_and_check_decoder_model_past( | |
| self, | |
| config, | |
| input_ids, | |
| attention_mask, | |
| lm_labels, | |
| ): | |
| config.use_cache = True | |
| model = BlenderbotDecoder(config=config).to(torch_device).eval() | |
| # first forward pass | |
| outputs = model(input_ids, use_cache=True) | |
| outputs_use_cache_conf = model(input_ids) | |
| outputs_no_past = model(input_ids, use_cache=False) | |
| self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) | |
| self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) | |
| past_key_values = outputs["past_key_values"] | |
| # create hypothetical next token and extent to next_input_ids | |
| next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) | |
| # append to next input_ids and | |
| next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) | |
| output_from_no_past = model(next_input_ids)["last_hidden_state"] | |
| output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"] | |
| # select random slice | |
| random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
| output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() | |
| output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() | |
| # test that outputs are equal for slice | |
| assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3) | |
| def create_and_check_decoder_model_attention_mask_past( | |
| self, | |
| config, | |
| input_ids, | |
| attention_mask, | |
| lm_labels, | |
| ): | |
| model = BlenderbotDecoder(config=config).to(torch_device).eval() | |
| # create attention mask | |
| attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) | |
| half_seq_length = input_ids.shape[-1] // 2 | |
| attn_mask[:, half_seq_length:] = 0 | |
| # first forward pass | |
| past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"] | |
| # past_key_values = model(input_ids, use_cache=True)["past_key_values"] | |
| # create hypothetical next token and extent to next_input_ids | |
| next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) | |
| # change a random masked slice from input_ids | |
| random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 | |
| random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) | |
| input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens | |
| # append to next input_ids and attn_mask | |
| next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) | |
| attn_mask = torch.cat( | |
| [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], | |
| dim=1, | |
| ) | |
| # get two different outputs | |
| output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] | |
| output_from_past = model(next_tokens, past_key_values=past_key_values, attention_mask=attn_mask)[ | |
| "last_hidden_state" | |
| ] | |
| # select random slice | |
| random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() | |
| output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() | |
| output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() | |
| # test that outputs are equal for slice | |
| assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3) | |
| def prepare_config_and_inputs_for_common(self): | |
| config_and_inputs = self.prepare_config_and_inputs() | |
| ( | |
| config, | |
| input_ids, | |
| attention_mask, | |
| lm_labels, | |
| ) = config_and_inputs | |
| inputs_dict = { | |
| "input_ids": input_ids, | |
| "attention_mask": attention_mask, | |
| } | |
| return config, inputs_dict | |
| class BlenderbotStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): | |
| all_model_classes = (BlenderbotDecoder, BlenderbotForCausalLM) if is_torch_available() else () | |
| all_generative_model_classes = (BlenderbotForCausalLM,) if is_torch_available() else () | |
| test_pruning = False | |
| is_encoder_decoder = False | |
| def setUp( | |
| self, | |
| ): | |
| self.model_tester = BlenderbotStandaloneDecoderModelTester(self, is_training=False) | |
| self.config_tester = ConfigTester(self, config_class=BlenderbotConfig) | |
| def test_config(self): | |
| self.config_tester.run_common_tests() | |
| def test_decoder_model_past(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_decoder_model_past(*config_and_inputs) | |
| def test_decoder_model_attn_mask_past(self): | |
| config_and_inputs = self.model_tester.prepare_config_and_inputs() | |
| self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs) | |
| def test_retain_grad_hidden_states_attentions(self): | |
| # decoder cannot keep gradients | |
| return | |